Repository logo
 

Importance of low-angle grain boundaries in YBa2Cu3O7-delta coated conductors


Type

Article

Change log

Authors

Durrell, JH 
Rutter, NA 

Abstract

Over the past ten years the perception of grain boundaries in YBa2Cu3O7-δ conductors has changed greatly. They are no longer a problem to be eliminated but an inevitable and potentially favourable part of the material. This change has arisen as a consequence of new manufacturing techniques which result in excellent grain alignment, reducing the spread of grain boundary misorientation angles. At the same time there is considerable recent evidence which indicates that the variation of properties of grain boundaries with mismatch angle is more complex than a simple exponential decrease in critical current. This is due to the fact that low-angle grain boundaries represent a qualitatively different system to high angle boundaries. The time is therefore right for a targetted review of research into low-angle YBa2Cu3O7-δ grain boundaries. This article does not purport to be a comprehensive review of the physics of grain boundaries as found in YBa2Cu3O7-δ in general; for a broader overview we would recommend that the reader consult the comprehensive review of Hilgenkamp and Mannhart (Rev. Mod. Phys., 74, 485, 2002). The purpose of this article is to review the origin and properties of the low-angle grain boundaries found in YBa2Cu3O7-δ coated conductors both individually and as a collective system.

Description

Keywords

CRITICAL-CURRENT-DENSITY, T-C SUPERCONDUCTORS, PULSED-LASER DEPOSITION, X-RAY MICRODIFFRACTION, ZIRCONIA BUFFER LAYERS, THIN-FILMS, CRITICAL CURRENTS, YBCO FILMS, TRANSPORT-PROPERTIES, TEXTURE DEVELOPMENT

Journal Title

Superconductor Science and Technology

Conference Name

Journal ISSN

0953-2048
1361-6668

Volume Title

22

Publisher

IOP Science
Sponsorship
Engineering and Physical Sciences Research Council (EP/C011554/1)
EPSRC