BIRD-SNACK: Bayesian inference of dust law RV distributions using SN Ia apparent colours at peak
Accepted version
Peer-reviewed
Repository URI
Repository DOI
Change log
Authors
Abstract
jats:titleABSTRACT</jats:title>
jats:pTo reduce systematic uncertainties in Type Ia supernova (SN Ia) cosmology, the host galaxy dust law shape parameter, RV, must be accurately constrained. We thus develop a computationally inexpensive pipeline, Bird-Snack, to rapidly infer dust population distributions from optical-near-infrared SN colours at peak brightness, and determine which analysis choices significantly impact the population mean RV inference,
Description
Keywords
Journal Title
Conference Name
Journal ISSN
1365-2966
Volume Title
Publisher
Publisher DOI
Sponsorship
European Commission Horizon 2020 (H2020) Marie Sk?odowska-Curie actions (890695)
European Commission Horizon 2020 (H2020) Marie Sk?odowska-Curie actions (873089)
STFC (2118607)
STFC (2442603)
European Commission Horizon 2020 (H2020) ERC (101018897)