Repository logo

Functionalisation of a heat-derived and bio-inert albumin hydrogel with extracellular matrix by air plasma treatment

Published version

Change log


Ong, John 
Zhao, Junzhe 
Levy, Galit Katarivas 
Macdonald, James 
Justin, Alexander W. 


Abstract: Albumin-based hydrogels are increasingly attractive in tissue engineering because they provide a xeno-free, biocompatible and potentially patient-specific platform for tissue engineering and drug delivery. The majority of research on albumin hydrogels has focused on bovine serum albumin (BSA), leaving human serum albumin (HSA) comparatively understudied. Different gelation methods are usually employed for HSA and BSA, and variations in the amino acid sequences of HSA and BSA exist; these account for differences in the hydrogel properties. Heat-induced gelation of aqueous HSA is the easiest method of synthesizing HSA hydrogels however hydrogel opacity and poor cell attachment limit their usefulness in downstream applications. Here, a solution to this problem is presented. Stable and translucent HSA hydrogels were created by controlled thermal gelation and the addition of sodium chloride. The resulting bio-inert hydrogel was then subjected to air plasma treatment which functionalised its surface, enabling the attachment of basement membrane matrix (Geltrex). In vitro survival and proliferation studies of foetal human osteoblasts subsequently demonstrated good biocompatibility of functionalised albumin hydrogels compared to untreated samples. Thus, air plasma treatment enables functionalisation of inert heat-derived HSA hydrogels with extracellular matrix proteins and these may be used as a xeno-free platform for biomedical research or cell therapy.


Funder: Cambridge Commonwealth, European and International Trust; doi:

Funder: Trinity College, University of Cambridge; doi:

Funder: Blavatnik Family Foundation; doi:

Funder: Reuben Foundation

Funder: Worshipful Council of Engineers

Funder: Isaac Newton Trust; doi:


Article, /631/45, /631/1647, /631/61, /639/638, /639/301, article

Journal Title

Scientific Reports

Conference Name

Journal ISSN


Volume Title



Nature Publishing Group UK
National University of Singapore (Young NUS Fellow(ship))
W D Armstrong Trust (W D Armstrong Doctoral Training Fellowship)
Engineering and Physical Sciences Research Council (EP/L016567/1)
Rosetrees Trust (M787)