Repository logo
 

Symmetric power functoriality for holomorphic modular forms, II

Accepted version
Peer-reviewed

Type

Article

Change log

Authors

Newton, James 
Thorne, Jack A 

Abstract

jats:titleAbstract</jats:title>jats:pLet jats:inline-formulajats:alternativesjats:tex-mathf</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> mml:mif</mml:mi> </mml:math></jats:alternatives></jats:inline-formula> be a cuspidal Hecke eigenform without complex multiplication. We prove the automorphy of the symmetric power lifting jats:inline-formulajats:alternativesjats:tex-mathSymnf</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> mml:msup mml:moSym</mml:mo> mml:min</mml:mi> </mml:msup> mml:mif</mml:mi> </mml:math></jats:alternatives></jats:inline-formula> for every jats:inline-formulajats:alternativesjats:tex-mathn≥1</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> mml:min</mml:mi> mml:mo≥</mml:mo> mml:mn1</mml:mn> </mml:math></jats:alternatives></jats:inline-formula>.</jats:p>

Description

Keywords

4902 Mathematical Physics, 4903 Numerical and Computational Mathematics, 4904 Pure Mathematics, 49 Mathematical Sciences

Journal Title

PUBLICATIONS MATHEMATIQUES DE L IHES

Conference Name

Journal ISSN

0073-8301
1618-1913

Volume Title

Publisher

Springer Science and Business Media LLC

Rights

All rights reserved
Sponsorship
European Research Council (714405)