Repository logo
 

Understanding LiOH Formation in a Li-O 2 Battery with LiI and H 2 O Additives

cam.issuedOnline2018-11-20
dc.contributor.authorLiu, T
dc.contributor.authorKim, G
dc.contributor.authorJónsson, E
dc.contributor.authorCastillo-Martinez, E
dc.contributor.authorTemprano, I
dc.contributor.authorShao, Y
dc.contributor.authorCarretero-González, J
dc.contributor.authorKerber, RN
dc.contributor.authorGrey, CP
dc.contributor.orcidLiu, T [0000-0002-6515-0427]
dc.contributor.orcidKim, G [0000-0001-9153-3141]
dc.contributor.orcidCastillo-Martinez, E [0000-0002-8577-9572]
dc.contributor.orcidGrey, CP [0000-0001-5572-192X]
dc.date.accessioned2018-12-18T00:32:38Z
dc.date.available2018-12-18T00:32:38Z
dc.date.issued2019
dc.description.abstractLiI-promoted LiOH formation in Li-O2 batteries with wet ether electrolytes has been investigated by Raman, nuclear magnetic resonance spectroscopy, operando pressure tests and molecular dynamics simulations. We find that LiOH formation is a synergistic effect involving both H2O and LiI additives, whereas with either alone Li2O2 forms. LiOH is generated via a nominal four-electron oxygen reduction reaction, the hydrogen coming from H2O and the oxygen from both O2 and H2O, and with fewer side reactions than typically associated with Li2O2 formation; the presence of fewer parasitic reactions is attributed to the proton donor role of water which can coordinate to O2- and the higher chemical stability of LiOH. Iodide plays a catalytic role in decomposing H2O2/HO2- thereby promoting LiOH formation, its efficacy being highly dependent on the water concentration. This iodide catalysis becomes retarded at high water contents due to the formation of large water-solvated clusters, and Li2O2 forms again.
dc.description.sponsorshipEPSRC
dc.identifier.doi10.17863/CAM.34413
dc.identifier.eissn2155-5435
dc.identifier.issn2155-5435
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/287103
dc.language.isoeng
dc.publisherAmerican Chemical Society (ACS)
dc.publisher.urlhttp://dx.doi.org/10.1021/acscatal.8b02783
dc.subjectLiI
dc.subjectLi-O-2 batteries
dc.subjectLiOH formation
dc.subjectfour-electron oxygen reduction
dc.subjectwater clusters
dc.subjectmolecular dynamics
dc.titleUnderstanding LiOH Formation in a Li-O <inf>2</inf> Battery with LiI and H <inf>2</inf> O Additives
dc.typeArticle
dcterms.dateAccepted2018-11-21
prism.endingPage77
prism.issueIdentifier1
prism.publicationDate2019
prism.publicationNameACS Catalysis
prism.startingPage66
prism.volume9
pubs.funder-project-idEngineering and Physical Sciences Research Council (EP/M009521/1)
pubs.funder-project-idEuropean Commission Horizon 2020 (H2020) Future and Emerging Technologies (FET) (696656)
rioxxterms.licenseref.startdate2019-01-04
rioxxterms.licenseref.urihttp://www.rioxx.net/licenses/all-rights-reserved
rioxxterms.typeJournal Article/Review
rioxxterms.versionAM
rioxxterms.versionofrecord10.1021/acscatal.8b02783

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
manuscript_Liu et al_LiOH_LiI_CPG.docx
Size:
26.2 MB
Format:
Microsoft Word XML
Description:
Accepted version
Licence
http://www.rioxx.net/licenses/all-rights-reserved
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
DepositLicenceAgreementv2.1.pdf
Size:
150.9 KB
Format:
Adobe Portable Document Format