Repository logo

Magnetic resonance fingerprinting of the pancreas at 1.5 T and 3.0 T

Published version

Change log


Serrao, Eva M. 
Kessler, Dimitri A. 
Carmo, Bruno 
Beer, Lucian 
Brindle, Kevin M. 


Abstract: Magnetic resonance imaging of the pancreas is increasingly used as an important diagnostic modality for characterisation of pancreatic lesions. Pancreatic MRI protocols are mostly qualitative due to time constraints and motion sensitivity. MR Fingerprinting is an innovative acquisition technique that provides qualitative data and quantitative parameter maps from a single free‐breathing acquisition with the potential to reduce exam times. This work investigates the feasibility of MRF parameter mapping for pancreatic imaging in the presence of free-breathing exam. Sixteen healthy participants were prospectively imaged using MRF framework. Regions-of-interest were drawn in multiple solid organs including the pancreas and T1 and T2 values determined. MRF T1 and T2 mapping was performed successfully in all participants (acquisition time:2.4–3.6 min). Mean pancreatic T1 values were 37–43% lower than those of the muscle, spleen, and kidney at both 1.5 and 3.0 T. For these organs, the mean pancreatic T2 values were nearly 40% at 1.5 T and < 12% at 3.0 T. The feasibility of MRF at 1.5 T and 3 T was demonstrated in the pancreas. By enabling fast and free-breathing quantitation, MRF has the potential to add value during the clinical characterisation and grading of pathological conditions, such as pancreatitis or cancer.


Funder: GlaxoSmithKline; doi:

Funder: National Institute of Health Research (NIHR) Cambridge Biomedical Research Centre

Funder: Addenbrooke's Charitable Trust, Cambridge University Hospitals; doi:


Article, /692/308/53/2421, /692/700/1421, article

Journal Title

Scientific Reports

Conference Name

Journal ISSN


Volume Title



Nature Publishing Group UK
Cancer Research UK Cambridge Centre (CA685/A25177, CA685/A25177, CA685/A25177, CA685/A25177, CA685/A25177, CA685/A25177)
Horizon 2020 Framework Programme (761214)