Repository logo

Local Limit Theorems for the Random Conductance Model and Applications to the Ginzburg–Landau $$\nabla \phi $$ Interface Model

Published version

Change log


Taylor, Peter A 


jats:titleAbstract</jats:title>jats:pWe study a continuous-time random walk onjats:inline-formulajats:alternativesjats:tex-math$${\mathbb {Z}}^d$$</jats:tex-math><mml:math xmlns:mml="">mml:msupmml:mrowmml:miZ</mml:mi></mml:mrow>mml:mid</mml:mi></mml:msup></mml:math></jats:alternatives></jats:inline-formula>in an environment of random conductances taking values injats:inline-formulajats:alternativesjats:tex-math$$(0,\infty )$$</jats:tex-math><mml:math xmlns:mml="">mml:mrowmml:mo(</mml:mo>mml:mn0</mml:mn>mml:mo,</mml:mo>mml:mi∞</mml:mi>mml:mo)</mml:mo></mml:mrow></mml:math></jats:alternatives></jats:inline-formula>. For a static environment, we extend the quenched local limit theorem to the case of a general speed measure, given suitable ergodicity and moment conditions on the conductances and on the speed measure. Under stronger moment conditions, an annealed local limit theorem is also derived. Furthermore, an annealed local limit theorem is exhibited in the case of time-dependent conductances, under analogous moment and ergodicity assumptions. This dynamic local limit theorem is then applied to prove a scaling limit result for the space-time covariances in the Ginzburg–Landaujats:inline-formulajats:alternativesjats:tex-math$$\nabla \phi $$</jats:tex-math><mml:math xmlns:mml="">mml:mrowmml:mi∇</mml:mi>mml:miϕ</mml:mi></mml:mrow></mml:math></jats:alternatives></jats:inline-formula>model. We also show that the associated Gibbs distribution scales to a Gaussian free field. These results apply to convex potentials for which the second derivative may be unbounded.</jats:p>



4901 Applied Mathematics, 49 Mathematical Sciences, 4905 Statistics

Journal Title

Journal of Statistical Physics

Conference Name

Journal ISSN


Volume Title



Springer Science and Business Media LLC