Repository logo
 

Tropical butterflies use thermal buffering and thermal tolerance as alternative strategies to cope with temperature increase.

Accepted version
Peer-reviewed

No Thumbnail Available

Type

Article

Change log

Authors

Arizala Cobo, Stephany 

Abstract

Climate change poses a severe threat to many taxa, with increased mean temperatures and frequency of extreme weather events predicted. Insects can respond to high temperatures using behaviour, such as angling their wings away from the sun or seeking cool local microclimates to thermoregulate or through physiological tolerance. In a butterfly community in Panama, we compared the ability of adult butterflies from 54 species to control their body temperature across a range of air temperatures (thermal buffering ability), as well as assessing the critical thermal maxima for a subset of 24 species. Thermal buffering ability and tolerance were influenced by family, wing length, and wing colour, with Pieridae, and butterflies that are large or darker in colour having the strongest thermal buffering ability, but Hesperiidae, small, and darker butterflies tolerating the highest temperatures. We identified an interaction between thermal buffering ability and physiological tolerance, where species with stronger thermal buffering abilities had lower thermal tolerance, and vice versa. This interaction implies that species with more stable body temperatures in the field may be more vulnerable to increases in ambient temperatures, for example heat waves associated with ongoing climate change. Our study demonstrates that tropical species employ diverse thermoregulatory strategies, which is also reflected in their sensitivity to temperature extremes.

Description

Keywords

Lepidoptera, buffering ability, butterfly, critical thermal maximum, ectotherm, insect, thermal ecology, thermal limits

Journal Title

J Anim Ecol

Conference Name

Journal ISSN

0021-8790
1365-2656

Volume Title

Publisher

Wiley
Sponsorship
NERC (NE/V007173/1)
The research was funded by The Czech Science Foundation (GAČR 19-15645Y to GPAL and 20-31295S to YB), ERC Starting Grant BABE 805189 to BLH and KS, Smithsonian Tropical Research Institute short-term fellowship to BLH, Cambridge Conservation Initiative/Evolution Education Trust (CCI/EET) to EAJ, and NERC Highlight topic GLiTRS project NE/V007173/1 to AJB. YB and GPAL were supported by the Sistema Nacional de Investigación, SENACYT, Panama.
Relationships
Is supplemented by:
Is previous version of: