Repository logo

Identifying natural modifiers of meiotic crossover frequency in Arabidopsis thaliana



Change log


Lawrence, Emma Jane 


During meiosis, homologous chromosomes pair and undergo reciprocal genetic exchange, producing crossovers. This generates genetic diversity and is required for balanced homolog segregation. Despite the critical functions of crossovers, their frequency and distribution varies extensively within and between species. This crossover variation can be caused by trans-modifiers within populations, which encode diffusible molecules that influence crossover formation elsewhere in the genome. This project utilised natural accessions of Arabidopsis thaliana to identify trans-modifying loci underlying crossover variation within the species.

I performed Quantitative Trait Loci (QTL) mapping using a fluorescence-based crossover reporter system to measure recombination frequency in a genomic interval on chromosome 3, termed 420. Mapping in a Col-420 × Bur-0 F2 population revealed four major recombination QTLs (rQTLs) that influence crossover frequency. A novel recessive rQTL on chromosome 1 that reduced crossovers within the interval was fine-mapped to a premature stop codon in TATA Binding Protein (TBP)-associated factor 4b (TAF4b) in Bur-0 (taf4b-1). TAF4b is a subunit of the TFIID complex, a multi-protein general transcription factor complex comprising TBP and numerous TAFs that forms a component of the pre-initiation complex that recruits RNA polymerase II to promoters. Transformation-based complementation experiments and the isolation of several independent taf4b alleles provided genetic proof that TAF4b is essential for wild-type levels of crossover within 420. Analysis of the prevalence of the taf4b-1 mutation in the global Arabidopsis accession collection demonstrated its specificity to three accessions in the British Isles.

A combination of cytology, genetic analysis using additional fluorescent reporter lines, and sequencing in F2 recombinant populations demonstrated a genome-wide reduction in crossover frequency in taf4b-1. In addition, RNA sequencing identified numerous transcriptional changes in taf4b-1. Both up- and down-regulated gene sets displayed significant enrichment for genes that are predominantly expressed in meiocytes, and several gene ontology terms pertaining to protein modification and meiotic processes.

These results further demonstrate the existence of genetic modifiers of crossover frequency in natural populations of A. thaliana, and the characterisation of a novel trans-modifier of recombination, TAF4b. This signifies a novel function for TAF4b in Arabidopsis, and further enhances our understanding of the molecular factors controlling the frequency and distribution of meiotic crossovers in plants.





Henderson, Ian


Arabidopsis, meiosis, recombination, crossover, variation, transcription


Doctor of Philosophy (PhD)

Awarding Institution

University of Cambridge