Repository logo
 

Water, salt water, and alkaline solution uptake in epoxy thin films


Type

Article

Change log

Authors

Scott, P 
Lees, JM 

Abstract

jats:titleABSTRACT</jats:title>jats:pAs a means of characterizing the diffusion parameters of fiber reinforced polymer (FRP) composites within a relatively short time frame, the potential use of short term tests on epoxy films to predict the long‐term behavior is investigated. Reference is made to the literature to assess the effectiveness of Fickian and anomalous diffusion models to describe solution uptake in epoxies. The influence of differing exposure conditions on the diffusion in epoxies, in particular the effect of solution type and temperature, are explored. Experimental results, where the solution uptake in desiccated (D) or undesiccated (U) thin films of a commercially available epoxy matrix subjected to water (W), salt water (SW), or alkali concrete pore solution (CPS) at either 20 or 60°C, are also presented. It was found that the type of solution did not significantly influence the diffusion behavior at 20°C and that the mass uptake profile was anomalous. Exposure to 60°C accelerated the initial diffusion behavior and appeared to raise the level of saturation. In spite of the accelerated approach, conclusive values of uptake at saturation remained elusive even at an exposure period of 5 years. This finding questions the viability of using short‐term thin film results to predict the long‐term mechanical performance of FRP materials. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 1898–1908, 2013</jats:p>

Description

Keywords

resins, degradation, films

Journal Title

Journal of Applied Polymer Science

Conference Name

Journal ISSN

0021-8995
1097-4628

Volume Title

130

Publisher

Wiley
Sponsorship
The first author was funded through an Engingeering and Physical Science Research Council Doctoral Training Award.