Fronto-parietal cortex in sequential behaviour
Repository DOI
Change log
Authors
Abstract
This dissertation investigates the fronto-parietal representation of the structure of organised mental episodes by studying its effect on the representation of cognitive events occurring at various positions within it. The experiments in chapter 2 look at the completion of hierarchically organized mental (task/subtask) episodes. Multiple identical target-detection events were organized into a sequential task episode, and the individual events were connected in a means-to-end relationship. It is shown that events that are conceptualized as completing defined task episodes elicit greater activity compared to identical events lying within the episode; the magnitude of the end of episode activity depended on the hierarchical abstraction of the episode. In chapter 3, the effect of ordinal position of the cognitive events, making up the task episode, on their representation is investigated in the context of a biphasic task episode. The design further manipulated the cognitive load of the two phases independently. This allowed for a direct comparison of the effect of phase vis-à-vis the effect of cognitive load. The results showed that fronto-parietal regions that increased their activity in response to cognitive load, also increased their activity for the later phases of the task episode, even though the cognitive load associated with the later phase was, arguably, lower than the previous phase. Chapter 4 investigates if the characteristics of the higher-level representations, like organization of task descriptions, have a causal role in determining the structure of the ensuing mental episode. Results show this to be true. They also confirm the results of earlier chapters in a different framework. Chapter 5 shows that the effect of episode structure is not limited to the elicited activity, but also affects the information content of the representation of the events composing the episode. Specifically, the information content in many regions of later steps is higher than that of earlier steps. Together, the results show widespread representation of the structure of organised mental episodes.