Repository logo
 

Comment on "Manifolds of quasi-constant SOAP and ACSF fingerprints and the resulting failure to machine learn four-body interactions" [J. Chem. Phys. 156, 034302 (2022)].

Accepted version
Peer-reviewed

Type

Article

Change log

Abstract

The "quasi-constant" smooth overlap of atomic position and atom-centered symmetry function fingerprint manifolds recently discovered by Parsaeifard and Goedecker [J. Chem. Phys. 156, 034302 (2022)] are closely related to the degenerate pairs of configurations, which are known shortcomings of all low-body-order atom-density correlation representations of molecular structures. Configurations that are rigorously singular-which we demonstrate can only occur in finite, discrete sets and not as a continuous manifold-determine the complete failure of machine-learning models built on this class of descriptors. The "quasi-constant" manifolds, on the other hand, exhibit low but non-zero sensitivity to atomic displacements. As a consequence, for any such manifold, it is possible to optimize model parameters and the training set to mitigate their impact on learning even though this is often impractical and it is preferable to use descriptors that avoid both exact singularities and the associated numerical instability.

Description

Keywords

51 Physical Sciences, 5102 Atomic, Molecular and Optical Physics, 34 Chemical Sciences, Machine Learning and Artificial Intelligence

Journal Title

J Chem Phys

Conference Name

Journal ISSN

0021-9606
1089-7690

Volume Title

157

Publisher

AIP Publishing