Repository logo

Investigation of a novel iron-uptake system and other genomic features in mecC Staphylococcus aureus



Change log


Raisen, Claire 


Staphylococcus aureus (S. aureus) is a significant pathogen that causes a wide variety of disease in humans and animals. Methicillin resistant S. aureus (MRSA) isolates carrying mecC, the gene that confers resistance to the antibiotic, have been isolated from humans but also from diverse animal species covering livestock, domestic and wild animals throughout Europe. Many of the known MRSA mecC isolates have been whole-genome sequenced by our group to gain insight into the evolution and epidemiology of these emerging lineages. For microbes and humans alike, iron is an essential cofactor in many biochemical reactions and S. aureus requires iron for colonisation and subsequent pathogenesis. The success of S. aureus is partly attributed to its ability to exploit the host iron pool. It does this through multiple iron uptake mechanisms, including at least two high-affinity iron scavenging siderophores (staphyloferrins A and B) and an iron-regulated surface determinant (Isd) pathway for haem-iron acquisition. Here I describe the identification of a novel locus encoding a siderophore-like non-ribosomal peptide synthetase (NRPS), directly downstream of the SCCmec insertion site in mecC S. aureus isolates. A homologous region was identified in Streptococcus equi 4047 (S. equi) which encodes a NRPS termed ‘equibactin’ that is involved in iron acquisition. I have therefore named the NRPS product ‘staphylobactin’ in MRSA, and the aim of this study was to determine the function of the staphylobactin biosynthesis cluster: is this region involved in iron acquisition and how might it be regulated? Analysis of the prevalence of isolates containing the staphylobactin locus showed it to be present in a large number of mecC strains in our collection but also identified homologues in other staphylococcus isolates. The region is highly conserved in all S. aureus isolates belonging to clonal complex (CC) 130 (broad host range lineage), suggesting that staphylobactin might impact on S. aureus’s ability to infect a broad range of host species. The staphylobactin gene cluster contains 14 coding sequences, stbB-F, F1, G-M and O. Bioinformatic analysis results in predictions of domain and gene functions associated with iron acquisition. I hypothesized that staphylobactin might have been acquired to compensate for the lack of another siderophore, such as staphyloferrin B, but the staphyloferrin B biosynthesis cluster and transport is present in nearly all S. aureus strains, ruling out this model. Unlike the equibactin locus, however, the staphylobactin locus lacks a homolog for the iron-dependent regulator eqbA. Instead, expression of this locus appears to be regulated by MntR, a DtxR-like regulator. The staplylobactin gene cluster is flanked by direct repeats which suggest staphylobactin could have been gained by horizontal gene transfer. In order to study the role of the staphylobactin gene cluster, deletion mutants of MntR, the staphylobactin locus and staphyloferrins A and B, were generated using the pIMAY two step gene deletion procedure in the previously un-manipulated mecC S. aureus CC130 strains – a challenging protocol that required significant optimization given the difficulties with manipulating this bacterium. Analysis of the MntR mutant suggests that the staphylobactin operon is regulated by MntR, acting as a positive regulator, in an iron-dependent manner. By RT-PCR, I found that expression of the staphylobactin NRPS genes is increased when cultures are grown in the absence of iron, suggesting an involvement with iron acquisition. Genomic inactivation of the staphyloferrins resulted in a mutant severely incapacitated for growth in serum and transferrin as the sole iron source, and addition of iron reversed this phenotype. However, deletion of staphylobactin alone or in addition to the staphyloferrins, lacked an iron-dependent growth defect, and numerous assays failed to identify a clear role for staphylobactin in iron metabolism. Therefore, further experiments are needed to elucidate the function of this siderophore like NRPS. Analysis of the same sequenced CC130 mecC isolates from our strain collection in which the staphylobactin locus was found, led to the identification of a novel Von Willebrand (vwb) gene. In order to investigate possible reasons for these isolates to infect a wide range of host species, wild-type and vwb deletion mutant strains, along with the novel vwb expressed in lactococcus, were tested using a coagulation assay and were able to clot plasma from a broad range of host species. Thus the specificity of vWbp proteins can be used to infer the host specificity and evolutionary history of the S. aureus strains that harbour them. Although I was unable to generate definitive evidence revealing the biological role for the staphylobactin locus this study has generated valuable tools for further studies and thoroughly tested a number of hypotheses concerning its role in cation metabolism.





Holmes, Mark


Staphylococcus aureus, Iron acquisition, Von Willebrand


Doctor of Philosophy (PhD)

Awarding Institution

University of Cambridge