Repository logo
 

3D Ferroconcrete-Like Aminated Carbon Nanotubes Network Anchoring Sulfur for Advanced Lithium–Sulfur Battery

cam.issuedOnline2018-07-11
dc.contributor.authorYan, M
dc.contributor.authorChen, H
dc.contributor.authorYu, Y
dc.contributor.authorZhao, H
dc.contributor.authorLi, CF
dc.contributor.authorHu, ZY
dc.contributor.authorWu, P
dc.contributor.authorChen, L
dc.contributor.authorWang, H
dc.contributor.authorPeng, D
dc.contributor.authorGao, H
dc.contributor.authorHasan, T
dc.contributor.authorLi, Y
dc.contributor.authorSu, BL
dc.contributor.orcidHasan, Tawfique [0000-0002-6250-7582]
dc.date.accessioned2018-09-05T12:48:36Z
dc.date.available2018-09-05T12:48:36Z
dc.date.issued2018
dc.description.abstract<jats:title>Abstract</jats:title><jats:p>To address the serious capacity fading in lithium–sulfur batteries, a 3D ferroconcrete‐like aminated carbon nanotubes network with polyaniline coating as an effective sulfur host to contain polysulfide dissolution is presented here. In this composite, the cross‐linked aminated carbon nanotubes framework provides a fast charge transport pathway and enhancement in the reaction kinetics of the active material to greatly improve the rate capability and sulfur utilization. The ethylenediamine moieties provide strong adhesion of polar discharge products to nonpolar carbon surfaces and thus efficiently prevent polysulfide dissolution to improve the cycle stability, confirmed by density functional theory calculations. The outside polyaniline layers structurally restrain polysulfides to prevent the shuttle effect and active material loss. Benefiting from these advantages, the synthesized composite exhibits a high initial capacity of 1215 mAh g<jats:sup>−1</jats:sup> and a capacity of 975 mAh g<jats:sup>−1</jats:sup> after 200 cycles at 0.2 C. Even after 200 cycles at 0.5 C, a capacity of 735 mAh g<jats:sup>−1</jats:sup> can be maintained, among the best performance reported. The strategy in this work can shed some light on modifying nonpolar carbon surfaces via the amination process to chemically attach sulfur species for high‐performance lithium–sulfur batteries.</jats:p>
dc.description.sponsorshipRoyal Academy of Engineering
dc.identifier.doi10.17863/CAM.26943
dc.identifier.eissn1614-6840
dc.identifier.issn1614-6832
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/279571
dc.language.isoeng
dc.publisherWiley
dc.publisher.urlhttp://dx.doi.org/10.1002/aenm.201801066
dc.subjectcarbon nanotubes
dc.subjectdensity functional theory
dc.subjectethylenediamine modification
dc.subjectLi-S battery
dc.subjectpolyaniline
dc.title3D Ferroconcrete-Like Aminated Carbon Nanotubes Network Anchoring Sulfur for Advanced Lithium–Sulfur Battery
dc.typeArticle
dcterms.dateAccepted2018-06-18
prism.issueIdentifier25
prism.publicationDate2018
prism.publicationNameAdvanced Energy Materials
prism.volume8
pubs.funder-project-idRoyal Academy of Engineering (RAEng) (10216/105)
rioxxterms.licenseref.startdate2018-09-05
rioxxterms.licenseref.urihttp://www.rioxx.net/licenses/all-rights-reserved
rioxxterms.typeJournal Article/Review
rioxxterms.versionAM
rioxxterms.versionofrecord10.1002/aenm.201801066

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
3D Aminated CNTs for Advanced Li-S Batteries-R2.doc
Size:
15.73 MB
Format:
Microsoft Word
Description:
Accepted version
Licence
http://www.rioxx.net/licenses/all-rights-reserved
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
DepositLicenceAgreement.pdf
Size:
417.78 KB
Format:
Adobe Portable Document Format