Repository logo
 

Learning the travelling salesperson problem requires rethinking generalization

cam.issuedOnline2022-04-28
dc.contributor.authorJoshi, Chaitanya K
dc.contributor.authorCappart, Quentin
dc.contributor.authorRousseau, Louis-Martin
dc.contributor.authorLaurent, Thomas
dc.contributor.orcidJoshi, Chaitanya K [0000-0003-4722-1815]
dc.date.accessioned2022-06-07T08:11:49Z
dc.date.available2022-06-07T08:11:49Z
dc.date.issued2022-04
dc.date.updated2022-06-07T08:11:49Z
dc.description.abstract<jats:title>Abstract</jats:title><jats:p>End-to-end training of neural network solvers for graph combinatorial optimization problems such as the Travelling Salesperson Problem (TSP) have seen a surge of interest recently, but remain intractable and inefficient beyond graphs with few hundreds of nodes. While state-of-the-art learning-driven approaches for TSP perform closely to classical solvers when trained on trivially small sizes, they are unable to generalize the learnt policy to larger instances at practical scales. This work presents an end-to-end<jats:italic>neural combinatorial optimization</jats:italic>pipeline that unifies several recent papers in order to identify the inductive biases, model architectures and learning algorithms that promote generalization to instances larger than those seen in training. Our controlled experiments provide the first principled investigation into such<jats:italic>zero-shot</jats:italic>generalization, revealing that extrapolating beyond training data requires rethinking the neural combinatorial optimization pipeline, from network layers and learning paradigms to evaluation protocols. Additionally, we analyze recent advances in deep learning for routing problems through the lens of our pipeline and provide new directions to stimulate future research.</jats:p>
dc.identifier.doi10.17863/CAM.85173
dc.identifier.eissn1572-9354
dc.identifier.issn1383-7133
dc.identifier.others10601-022-09327-y
dc.identifier.other9327
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/337764
dc.languageen
dc.language.isoeng
dc.publisherSpringer Science and Business Media LLC
dc.publisher.urlhttp://dx.doi.org/10.1007/s10601-022-09327-y
dc.subject46 Information and Computing Sciences
dc.subject4611 Machine Learning
dc.subjectMachine Learning and Artificial Intelligence
dc.titleLearning the travelling salesperson problem requires rethinking generalization
dc.typeArticle
dcterms.dateAccepted2022-03-16
prism.endingPage98
prism.issueIdentifier1-2
prism.publicationNameConstraints
prism.startingPage70
prism.volume27
rioxxterms.licenseref.urihttp://creativecommons.org/licenses/by/4.0/
rioxxterms.versionVoR
rioxxterms.versionofrecord10.1007/s10601-022-09327-y

Files

Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
10601_2022_Article_9327_nlm.xml
Size:
144.97 KB
Format:
Extensible Markup Language
Description:
Bibliographic metadata
Licence
http://creativecommons.org/licenses/by/4.0/
Loading...
Thumbnail Image
Name:
10601_2022_Article_9327.pdf
Size:
3.18 MB
Format:
Adobe Portable Document Format
Description:
Published version
Licence
http://creativecommons.org/licenses/by/4.0/