Transit probabilities in secularly evolving planetary systems


Change log
Authors
Read, MJ 
Wyatt, MC 
Triaud, AHMJ 
Abstract

This paper considers whether the population of known transiting exoplanets provides evidence for additional outer planets on inclined orbits, due to the perturbing effect of such planets on the orbits of inner planets. As such, we develop a semi-analytical method for calculating the probability that two mutually inclined planets are observed to transit. We subsequently derive a simplified analytical form to describe how the mutual inclination between two planets evolves due to secular interactions with a wide orbit inclined planet and use this to determine the mean probability that the two inner planets are observed to transit. From application to Kepler-48 and HD-106315, we constrain the inclinations of the outer planets in these systems (known from radial velocity). We also apply this work to the so-called Kepler Dichotomy, which describes the excess of single transiting systems observed by Kepler. We find three different ways of explaining this dichotomy: Some systems could be inherently single, some multiplanet systems could have inherently large mutual inclinations, while some multiplanet systems could cyclically attain large mutual inclinations through interaction with an inclined outer planet. We show how the different mechanisms can be combined to fit the observed populations of Kepler systems with one and two transiting planets. We also show how the distribution of mutual inclinations of transiting two-planet systems constrains the fraction of two-planet systems that have perturbing outer planets, since such systems should be preferentially discovered by Kepler when the inner planets are coplanar due to an increased transit probability.

Description
Keywords
planets and satellites: dynamical evolution and stability
Journal Title
Monthly Notices of the Royal Astronomical Society
Conference Name
Journal ISSN
1745-3925
1745-3933
Volume Title
469
Publisher
Oxford University Press
Sponsorship
European Research Council (279973)
Science and Technology Facilities Council (ST/N000927/1)
MJR acknowledges support of an STFC studentship, and MCW acknowledges the support from the European Union through grant number 279973. This research has also made use of the NASA Exoplanet Archive, which is operated by the California Institute of Technology, under contract with the National Aeronautics and Space Administration under the Exoplanet Exploration Program.