Repository logo
 

Reconstructing transmission trees for communicable diseases using densely sampled genetic data.

Published version
Peer-reviewed

Repository DOI


Type

Article

Change log

Authors

Worby, Colin J 
O'Neill, Philip D 
Kypraios, Theodore 
Robotham, Julie V 
De Angelis, Daniela  ORCID logo  https://orcid.org/0000-0001-6619-6112

Abstract

Whole genome sequencing of pathogens from multiple hosts in an epidemic offers the potential to investigate who infected whom with unparalleled resolution, potentially yielding important insights into disease dynamics and the impact of control measures. We considered disease outbreaks in a setting with dense genomic sampling, and formulated stochastic epidemic models to investigate person-to-person transmission, based on observed genomic and epidemiological data. We constructed models in which the genetic distance between sampled genotypes depends on the epidemiological relationship between the hosts. A data augmented Markov chain Monte Carlo algorithm was used to sample over the transmission trees, providing a posterior probability for any given transmission route. We investigated the predictive performance of our methodology using simulated data, demonstrating high sensitivity and specificity, particularly for rapidly mutating pathogens with low transmissibility. We then analyzed data collected during an outbreak of methicillin-resistant Staphylococcus aureus in a hospital, identifying probable transmission routes and estimating epidemiological parameters. Our approach overcomes limitations of previous methods, providing a framework with the flexibility to allow for unobserved infection times, multiple independent introductions of the pathogen, and within-host genetic diversity, as well as allowing forward simulation.

Description

Keywords

Bayesian inference, infectious disease, epidemics, outbreak investigation, transmission routes

Journal Title

Ann Appl Stat

Conference Name

Journal ISSN

1932-6157
1941-7330

Volume Title

10

Publisher

Institute of Mathematical Statistics
Sponsorship
Medical Research Council (G1000803)
Medical Research Council (G1000803/1)
Funding received from the following: The European Community [Mastering Hospital Antimicrobial Resistance (MOSAR) network contract LSHP-CT-2007-037941]. The National Institute of General Medical Sciences of the National Institutes of Health under award number U54GM088558. The UK Medical Research Council (Unit Programme number U105260566). The UKCRC Translational Infection Research Initiative (MRC Grant number G1000803) and Public Health England. The Medical Research Council and Department for International Development (Grant number MR/K006924/1). The Mahidol Oxford Tropical Medicine Research Unit is part of the Wellcome Trust Major Overseas Programme in SE Asia (Grant number 106698/Z/14/Z).