Repository logo
 

Tuning the effective spin-orbit coupling in molecular semiconductors

cam.issuedOnline2017-05-11
dc.contributor.authorSchott, S
dc.contributor.authorMcNellis, ER
dc.contributor.authorNielsen, CB
dc.contributor.authorChen, H-Y
dc.contributor.authorWatanabe, S
dc.contributor.authorTanaka, H
dc.contributor.authorMcCulloch, I
dc.contributor.authorTakimiya, K
dc.contributor.authorSinova, J
dc.contributor.authorSirringhaus, H
dc.contributor.orcidSchott, Sam [0000-0001-7387-3644]
dc.contributor.orcidSirringhaus, Henning [0000-0001-9827-6061]
dc.date.accessioned2017-05-11T16:03:33Z
dc.date.available2017-05-11T16:03:33Z
dc.date.issued2017-05-11
dc.description.abstractThe control of spins and spin to charge conversion in organics requires understanding the molecular spin-orbit coupling (SOC), and a means to tune its strength. However, quantifying SOC strengths indirectly through spin relaxation effects has proven difficult due to competing relaxation mechanisms. Here we present a systematic study of the g-tensor shift in molecular semiconductors and link it directly to the SOC strength in a series of high-mobility molecular semiconductors with strong potential for future devices. The results demonstrate a rich variability of the molecular g-shifts with the effective SOC, depending on subtle aspects of molecular composition and structure. We correlate the above g-shifts to spin-lattice relaxation times over four orders of magnitude, from 200 to 0.15 μs, for isolated molecules in solution and relate our findings for isolated molecules in solution to the spin relaxation mechanisms that are likely to be relevant in solid state systems.
dc.description.sponsorshipS.S. thanks the Winton Programme for the Physics of Sustainability, the Engineering and Physical Sciences Research Council (EPSRC), C. Daniel Frisbie for supplying d28-rubrene and Shin-ichi Kuroda for useful discussions. Funding from the Alexander von Humboldt Foundation, ERC Synergy Grant SC2 (No. 610115), and the Transregional Collaborative Research Center (SFB/TRR) 173 SPIN+X is acknowledged.
dc.identifier.doi10.17863/CAM.9556
dc.identifier.eissn2041-1723
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/264197
dc.language.isoeng
dc.publisherNature Publishing Group
dc.publisher.urlhttp://dx.doi.org/10.1038/ncomms15200
dc.rightsAttribution 4.0 International
dc.rightsAttribution 4.0 International
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.titleTuning the effective spin-orbit coupling in molecular semiconductors
dc.typeArticle
dcterms.dateAccepted2017-03-09
prism.number15200
prism.publicationDate2017
prism.publicationNameNature Communications
prism.volume8
pubs.funder-project-idEuropean Research Council (610115)
rioxxterms.licenseref.startdate2017-05-11
rioxxterms.licenseref.urihttp://creativecommons.org/licenses/by/4.0/
rioxxterms.typeJournal Article/Review
rioxxterms.versionVoR
rioxxterms.versionofrecord10.1038/ncomms15200

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Schott.pdf
Size:
1.19 MB
Format:
Adobe Portable Document Format
Description:
Published version
Licence
http://creativecommons.org/licenses/by/4.0/
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
DepositLicenceAgreement.pdf
Size:
417.78 KB
Format:
Adobe Portable Document Format