The structure and global distribution of the endoplasmic reticulum network is actively regulated by lysosomes
Published version
Repository URI
Repository DOI
Change log
Authors
Abstract
The endoplasmic reticulum (ER) comprises morphologically and functionally distinct domains, sheets and interconnected tubules. These domains undergo dynamic reshaping, in response to changes in the cellular environment. However, the mechanisms behind this rapid remodeling are largely unknown. Here, we report that ER remodeling is actively driven by lysosomes, following lysosome repositioning in response to changes in nutritional status: the anchorage of lysosomes to ER growth tips is critical for ER tubule elongation and connection. We validate this causal link via the chemo- and optogenetically driven re-positioning of lysosomes, which leads to both a redistribution of the ER tubules and its global morphology. Therefore, lysosomes sense metabolic change in the cell and regulate ER tubule distribution accordingly. Dysfunction in this mechanism during axonal extension may lead to axonal growth defects. Our results demonstrate a critical role of lysosome-regulated ER dynamics and reshaping in nutrient responses and neuronal development.
Description
Keywords
Journal Title
Conference Name
Journal ISSN
2375-2548
Volume Title
Publisher
Publisher DOI
Sponsorship
Wellcome Trust (215943/Z/19/Z)
Engineering and Physical Sciences Research Council (EP/L015889/1)
Biotechnology and Biological Sciences Research Council (BB/H023917/1)
Medical Research Council (G0902243)
Medical Research Council (MR/K02292X/1)
EPSRC (1946113)