Repository logo

Defect Passivation in Lead-Halide Perovskite Nanocrystals and Thin Films: Toward Efficient LEDs and Solar Cells.

Published version

Change log


Ye, Junzhi 
Byranvand, Mahdi Malekshahi 
Martínez, Clara Otero 
Hoye, Robert LZ 
Saliba, Michael 


Lead-halide perovskites (LHPs), in the form of both colloidal nanocrystals (NCs) and thin films, have emerged over the past decade as leading candidates for next-generation, efficient light-emitting diodes (LEDs) and solar cells. Owing to their high photoluminescence quantum yields (PLQYs), LHPs efficiently convert injected charge carriers into light and vice versa. However, despite the defect-tolerance of LHPs, defects at the surface of colloidal NCs and grain boundaries in thin films play a critical role in charge-carrier transport and nonradiative recombination, which lowers the PLQYs, device efficiency, and stability. Therefore, understanding the defects that play a key role in limiting performance, and developing effective passivation routes are critical for achieving advances in performance. This Review presents the current understanding of defects in halide perovskites and their influence on the optical and charge-carrier transport properties. Passivation strategies toward improving the efficiencies of perovskite-based LEDs and solar cells are also discussed.


Funder: Xunta de Galicia; Id:


defect passivation, lead-halide perovskites, perovskite nanocrystals, perovskite solar cells, surface chemistry

Journal Title

Angew Chem Int Ed Engl

Conference Name

Journal ISSN


Volume Title


Ministerio de Ciencia e Innovación (RYC2018-026103-I)
Royal Academy of Engineering (RF\201718\1701)
Deutsche Forschungsgemeinschaft (DFG) (GRK 2642)