LITHIUM-BASED VERTICALLY ALIGNED NANCOMPOSITE FILMS INCORPORATING LixLa0.32(Nb0.7Ti0.32)O3 ELECTROLYTE WITH HIGH Li+ ION CONDUCTIVITY
Published version
Peer-reviewed
Repository URI
Repository DOI
Change log
Authors
Abstract
Vertically aligned nanocomposite (VAN) thin films have shown strong potential in oxide nanoionics but are yet to be explored in detail in solid-state battery systems. Their 3D architectures are attractive because they may allow enhancements in capacity, current and power densities. Also, owing to their large interfacial surface areas, VAN could serve as models to study interfaces and solid-electrolyte interphase formation. Here, we have deposited highly crystalline and epitaxial vertically aligned nanocomposite films comprised of a LixLa0.32±0.05(Nb0.7±0.1Ti0.32±0.05)O3±δ-Ti0.8±0.1Nb0.17±0.03O2±δ-anatase (herein referred to as LL(Nb,Ti)O-(Ti,Nb)O2) electrolyte/anode system, the first anode VAN battery system reported. This system has an order of magnitude increased Li+ ionic conductivity over that in bulk Li3xLa1/3-xNbO3 (LLNO) and is comparable with the best available Li3xLa2/3-xTiO3 (LLTO) pulsed laser deposition films. Furthermore, the ionic conducting/electrically insulating LL(Nb,Ti)O and electrically conducting (Ti,Nb)O2 phases are a prerequisite for an interdigitated electrolyte/anode system. This work opens up the possibility of incorporating VAN films into an all solid-state battery, either as electrodes or electrolytes, by the pairing of suitable materials.
Description
Keywords
Journal Title
Conference Name
Journal ISSN
2166-532X
Volume Title
Publisher
Publisher DOI
Sponsorship
European Commission Horizon 2020 (H2020) ERC (882929)
Royal Academy of Engineering (RAEng) (CiET1819\24)
Faraday Institution (via University Of Sheffield) (FIRG017 160768)
Engineering and Physical Sciences Research Council (EP/P007767/1)
Engineering and Physical Sciences Research Council (EP/P024947/1)
Engineering and Physical Sciences Research Council (EP/R00661X/1)
Engineering and Physical Sciences Research Council (EP/S019367/1)
EPSRC (via University of Manchester) (EP/X527257/1)