CEERS Key Paper. I. An Early Look into the First 500 Myr of Galaxy Formation with JWST
Published version
Peer-reviewed
Repository URI
Repository DOI
Change log
Authors
Abstract
jats:titleAbstract</jats:title> jats:pWe present an investigation into the first 500 Myr of galaxy evolution from the Cosmic Evolution Early Release Science (CEERS) survey. CEERS, one of 13 JWST ERS programs, targets galaxy formation from jats:italicz</jats:italic> ∼ 0.5 to >10 using several imaging and spectroscopic modes. We make use of the first epoch of CEERS NIRCam imaging, spanning 35.5 arcminjats:sup2</jats:sup>, to search for candidate galaxies at jats:italicz</jats:italic> > 9. Following a detailed data reduction process implementing several custom steps to produce high-quality reduced images, we perform multiband photometry across seven NIRCam broad- and medium-band (and six Hubble broadband) filters focusing on robust colors and accurate total fluxes. We measure photometric redshifts and devise a robust set of selection criteria to identify a sample of 26 galaxy candidates at jats:italicz</jats:italic> ∼ 9–16. These objects are compact with a median half-light radius of ∼0.5 kpc. We present an early estimate of the jats:italicz</jats:italic> ∼ 11 rest-frame ultraviolet (UV) luminosity function, finding that the number density of galaxies at jats:italicM</jats:italic> jats:subUV</jats:sub> ∼ −20 appears to evolve very little from jats:italicz</jats:italic> ∼ 9 to 11. We also find that the abundance (surface density [arcminjats:sup−2</jats:sup>]) of our candidates exceeds nearly all theoretical predictions. We explore potential implications, including that at jats:italicz</jats:italic> > 10, star formation may be dominated by top-heavy initial mass functions, which would result in an increased ratio of UV light per unit halo mass, though a complete lack of dust attenuation and/or changing star formation physics may also play a role. While spectroscopic confirmation of these sources is urgently required, our results suggest that the deeper views to come with JWST should yield prolific samples of ultrahigh-redshift galaxies with which to further explore these conclusions.</jats:p>
Description
Keywords
Journal Title
Conference Name
Journal ISSN
2041-8213