Repository logo

Modelling Convective Dissolution and Reaction of Carbon Dioxide in Saline Aquifers



Change log


Cherezov, Ilia 


In an effort to reduce atmospheric carbon dioxide (CO2) emissions and mitigate climate change, it has been proposed to sequester supercritical CO2 in underground saline aquifers. Geological storage of CO2 involves different trapping mechanisms which are not yet fully understood. In order to improve the understanding of the effect of chemical reaction on the flow and transport of CO2, these storage mechanisms are modelled experimentally and numerically in this work. In particular, the destabilising interaction between the fluid hydrodynamics and a density-increasing second-order chemical reaction is considered. It is shown that after nondimensional scaling, the flow in a given physicochemical system is governed by two dimensionless groups, Da/Ra2, which measures the timescale for convection compared to those for reaction and diffusion, and CBo', which reflects the excess of the environmental reactant species relative to the diffusing solute. The destabilising reactive scenario is modelled experimentally under standard laboratory conditions using an immiscible two-layer system with acetic acid acting as the solute. A novel colorimetric technique is developed to infer the concentrations of chemical species from the pH of the solution making it possible to measure the flux of solute into the aqueous domain. The validity of this experimental system as a suitable analogue for the dissolution of CO2 is tested against previous work and the destabilising effect of reaction is investigated by adding ammonia to the lower aqueous layer. The system is also modelled numerically and it is shown that the aqueous phase reaction between acetic acid and ammonia can be considered to be instantaneous, meaning that Da/Ra2 tends to infinity and the flow is therefore governed only by the initial dimensionless concentration of reactant in the aqueous phase. The results from the experiments and numerical simulations are in good agreement, showing that an increase in the initial concentration of reactant increases the destabilising effect of reaction, accelerates the onset of convection and enhances the rate of dissolution of solute. The numerical model is then applied to a real world aquifer in the Sleipner gas field and it is demonstrated how the storage capacity of a potential CO2 reservoir could be enhanced by chemical reaction




Cardoso, Silvana


Fluid Mechanics, Convection, Reaction, Carbon Capture and Storage


Doctor of Philosophy (PhD)

Awarding Institution

University of Cambridge