An even pattern of xylan substitution is critical for interaction with cellulose in plant cell walls
Accepted version
Peer-reviewed
Repository URI
Repository DOI
Type
Change log
Authors
Abstract
Xylan and cellulose are abundant polysaccharides in vascular plants and essential for secondary cell wall strength. Acetate or glucuronic acid decorations are exclusively found on even-numbered residues in most of the glucuronoxylan polymer. It has been proposed that this even-specific positioning of the decorations might permit docking of xylan onto the hydrophilic face of a cellulose microfibril. Consequently, xylan adopts a flattened ribbon-like twofold helical screw conformation when bound to cellulose in the cell wall. Here we show that ESKIMO1/XOAT1/TBL29, a xylan-specific O-acetyltransferase, is necessary for generation of the even pattern of acetyl esters on xylan in Arabidopsis. The reduced acetylation in the esk1 mutant deregulates the position-specific activity of the xylan glucuronosyltransferase GUX1, and so the even pattern of glucuronic acid on the xylan is lost. Solid-state NMR of intact cell walls shows that, without the even-patterned xylan decorations, xylan does not interact normally with cellulose fibrils. We conclude that the even pattern of xylan substitutions seen across vascular plants therefore enables the interaction of xylan with hydrophilic faces of cellulose fibrils, and is essential for development of normal plant secondary cell walls.
Description
Keywords
Journal Title
Conference Name
Journal ISSN
2055-0278
Volume Title
Publisher
Publisher DOI
Sponsorship
Biotechnology and Biological Sciences Research Council (BB/M015432/1)
Biotechnology and Biological Sciences Research Council (BB/J014540/1)
Biotechnology and Biological Sciences Research Council (BB/N022181/1)