Repository logo
 

Turing patterns with high-resolution formed without chemical reaction in thin-film solution of organic semiconductors.

Published version
Peer-reviewed

Type

Article

Change log

Authors

Xiang, Zezhong 
Li, Jin 
You, Peng 
Han, Linbo 
Qiu, Mingxia 

Abstract

Regular patterns can form spontaneously in chemical reaction-diffusion systems under non-equilibrium conditions as proposed by Alan Turing. Here, we found that regular patterns can be generated in uphill-diffusion solution systems without a chemical reaction process through both in-situ and ex-situ observations. Organic semiconductor solution is confined between two parallel plates with controlled micron/submicron-meter distance to minimize convection of the liquid and avoid spinodal precipitation at equilibrium. The solvent evaporation concentrates the solution gradually into an oversaturated non-equilibrium condition, under which a phase-transition occurs and ordered concentration-waves are generated. By proper tuning of the experimental parameter, multiple regular patterns with micro/nano-meter scaled features (line, square-grid, zig-zag, and fence-like patterns etc.) were observed. We explain the observed phenomenon as Turing-pattern generation resulted from uphill-diffusion and solution oversaturation. The generated patterns in the solutions can be condensed onto substrates to form structured micro/nanomaterials. We have fabricated organic semiconductor devices with such patterned materials to demonstrate the potential applications. Our observation may serve as a milestone in the progress towards a fundamental understanding of pattern formation in nature, like in biosystem, and pave a new avenue in developing self-assembling techniques of micro/nano structured materials.

Description

Keywords

40 Engineering, 4016 Materials Engineering

Journal Title

Nat Commun

Conference Name

Journal ISSN

2041-1723
2041-1723

Volume Title

13

Publisher

Springer Science and Business Media LLC