Disambiguating the Similar: Investigating Pattern Separation in Medial Temporal Lobe Structures Using Rodent Models
Repository URI
Repository DOI
Change log
Authors
Abstract
This dissertation investigates the mechanisms underlying pattern separation, using rodent models and behavioural tasks that assess the use of representations for similar stimuli. Pattern separation is a theoretical mechanism involving the transformation of inputs into output representations that are less correlated to each other. Because of this orthogonalizing process, similar experiences are stored as discrete non-overlapping representations. Studying pattern separation emphasizes the important but often overlooked fact that successful memory involves more than just remembering events over a period of time, but also differentiating between similar memories. Through a series of experiments this dissertation adds support to the literature that the dentate gyrus (DG) subregion of the hippocampus is important for pattern separation when encoding spatial and contextual inputs. Using the Spontaneous Location Recognition (SLR) task it is shown the brain-derived neurotrophic factor (BDNF) can improve performance by acting via N-methyl-D-aspartate (NMDA) glutamate receptors in the DG and adult-born hippocampal neurons. Manipulating the level of neurogenesis by inhibiting Wnt signalling or by administering acyl-ghrelin systemically is shown to impair and enhance performance on SLR, respectively. Using a novel exposure paradigm in combination with SLR, it is demonstrated for the first time that the relationship between pattern separation and neurogenesis may be reciprocal, such that inhibiting neurogenesis impairs pattern separation, enhancing neurogenesis improves pattern separation, and performing pattern separation enhances the production or survival of adult-born hippocampal neurons. Finally, it is shown that the