Exploring the ATG9A interactome uncovers interaction with VPS13A
Published version
Peer-reviewed
Repository URI
Repository DOI
Type
Change log
Authors
Abstract
ATG9A, a transmembrane protein of the core autophagy pathway, cycles between the Golgi, endosomes and a vesicular compartment. ATG9A was recently shown to act as a lipid scramblase, and this function is thought to require its interaction with another core autophagy protein, ATG2A, which acts as a lipid transfer protein. Together, ATG9A and ATG2A are proposed to function to expand the growing autophagosome. However, ATG9A is implicated in other pathways including membrane repair and lipid droplet homeostasis. To elucidate other ATG9A interactors within the autophagy pathway, or interactors beyond autophagy, we performed an interactome analysis through mass spectrometry. This analysis revealed a host of proteins involved in lipid synthesis and trafficking, including ACSL3, VPS13A and VPS13C. Furthermore, we show that ATG9A directly interacts with VPS13A and forms a complex that is distinct from the ATG9A–ATG2A complex.
Description
Peer reviewed: True
Publication status: Published
Funder: European Research Council; doi: http://dx.doi.org/10.13039/100010663
Funder: Francis Crick Institute; doi: http://dx.doi.org/10.13039/100010438
Keywords
Is Part Of
Publisher
Publisher DOI
Sponsorship
Cancer Research UK (CC2134, CC2058)
Medical Research Council (CC2134, CC2058)
Wellcome Trust (CC2134, CC2058)
Seventh Framework Programme (788708)