MULTILEVEL MONTE CARLO FOR SMOOTHING VIA TRANSPORT METHODS
Accepted version
Peer-reviewed
Repository URI
Repository DOI
Change log
Authors
Abstract
In this article we consider recursive approximations of the smoothing distribution associated to partially observed \glspl{sde}, which are observed discretely in time. Such models appear in a wide variety of applications including econometrics, finance and engineering. This problem is notoriously challenging, as the smoother is not available analytically and hence require numerical approximation. This usually consists by applying a time-discretization to the \gls{sde}, for instance the Euler method, and then applying a numerical (e.g.\ Monte Carlo) method to approximate the smoother. This has lead to a vast literature on methodology for solving such problems, perhaps the most popular of which is based upon the \gls{pf} e.g.\ \cite{Doucet2011}. \changed{In the context of filtering for this class of problems, it is well-known that the particle filter can be improved upon in terms of cost to achieve a given \gls{mse} for estimates.} This in the sense that the computational effort can be reduced to achieve this target \gls{mse}, by using \gls{ml} methods \cite{Giles2008,Giles2015,Heinrich2001}, via the \gls{mlpf} \cite{Gregory2016,Jasra2015,Jasra2018}. \changed{For instance, to obtain a \gls{mse} of
Description
Keywords
Journal Title
Conference Name
Journal ISSN
1095-7197