Insights from multi-omic modeling of neurodegeneration in xeroderma pigmentosum using an induced pluripotent stem cell system.
Accepted version
Peer-reviewed
Repository URI
Repository DOI
Change log
Authors
Abstract
Xeroderma pigmentosum (XP) is caused by defective nucleotide excision repair of DNA damage. This results in hypersensitivity to ultraviolet light and increased skin cancer risk, as sunlight-induced photoproducts remain unrepaired. However, many XP patients also display early-onset neurodegeneration, which leads to premature death. The mechanism of neurodegeneration is unknown. Here, we investigate XP neurodegeneration using pluripotent stem cells derived from XP patients and healthy relatives, performing functional multi-omics on samples during neuronal differentiation. We show substantially increased levels of 5',8-cyclopurine and 8-oxopurine in XP neuronal DNA secondary to marked oxidative stress. Furthermore, we find that the endoplasmic reticulum stress response is upregulated and reversal of the mutant genotype is associated with phenotypic rescue. Critically, XP neurons exhibit inappropriate downregulation of the protein clearance ubiquitin-proteasome system (UPS). Chemical enhancement of UPS activity in XP neuronal models improves phenotypes, albeit inadequately. Although more work is required, this study presents insights with intervention potential.
Description
Keywords
Journal Title
Conference Name
Journal ISSN
2211-1247
Volume Title
Publisher
Publisher DOI
Sponsorship
Cambridge University Hospitals NHS Foundation Trust (CUH) (BRC4 Y1)
Dr. Josef Steiner Cancer Foundation (Award 2019)
Cancer Research UK (23916)
Cancer Research UK (C60100/A27815)
Medical Research Council (MR/R015724/1)
Cancer Research UK (23433)
Cancer Research UK (A27453)
National Institute for Health and Care Research (IS-BRC-1215-20014)