Photophysics of Two-Dimensional Perovskites—Learning from Metal Halide Substitution

cam.issuedOnline2021-08-11
dc.contributor.authorKahmann, S
dc.contributor.authorDuim, H
dc.contributor.authorFang, HH
dc.contributor.authorDyksik, M
dc.contributor.authorAdjokatse, S
dc.contributor.authorRivera Medina, M
dc.contributor.authorPitaro, M
dc.contributor.authorPlochocka, P
dc.contributor.authorLoi, MA
dc.contributor.orcidKahmann, S [0000-0001-7784-5333]
dc.contributor.orcidDuim, H [0000-0002-5126-0000]
dc.contributor.orcidFang, HH [0000-0003-3636-1011]
dc.contributor.orcidDyksik, M [0000-0003-4945-8795]
dc.contributor.orcidRivera Medina, M [0000-0003-4005-3636]
dc.contributor.orcidPitaro, M [0000-0003-0063-0742]
dc.contributor.orcidPlochocka, P [0000-0002-4019-6138]
dc.contributor.orcidLoi, MA [0000-0002-7985-7431]
dc.date.accessioned2021-11-12T16:47:46Z
dc.date.available2021-11-12T16:47:46Z
dc.date.issued2021
dc.date.submitted2021-04-21
dc.date.updated2021-11-12T16:47:45Z
dc.description.abstractWhereas their photophysics exhibits an intricate interplay of carriers with the lattice, most reports have so far relied on single compound studies. With the exception of variations of the organic spacer cations, the effect of constituent substitution on the photophysics and the nature of emitting species, in particular, has remained largely under-explored. Here PEA$_2$PbBr$_4$, PEA$_2$PbI$_4$, and PEA$_2$SnI$_4$ are studied through a variety of optical spectroscopy techniques to reveal a complex set of excitonic transitions at low temperature. We attribute the emergence of weak high energy features to a vibronic progression breaking Kasha's rule and highlight that the responsible phonons cannot be accessed through simple Raman spectroscopy. Bright peaks at lower energy are due to two distinct excitons, of which the upper is a convolution of a bright exciton and a localised state, whereas the lower is attributed to shallow defects. Our study offers deeper insights into the photophysics of two-dimensional perovskites through compositional substitution and highlights critical limits to the communities' current understanding of the photophysics of these compounds.
dc.identifier.doi10.17863/CAM.78033
dc.identifier.eissn1616-3028
dc.identifier.issn1616-301X
dc.identifier.otheradfm202103778
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/330589
dc.languageen
dc.publisherWiley
dc.publisher.urlhttp://dx.doi.org/10.1002/adfm.202103778
dc.subject2D perovskites
dc.subjectdefects
dc.subjectexcitons
dc.subjectmagneto-photoluminescence
dc.subjectphotophysics
dc.subjectRuddlesden-Popper phases
dc.titlePhotophysics of Two-Dimensional Perovskites—Learning from Metal Halide Substitution
dc.typeArticle
prism.issueIdentifier46
prism.publicationNameAdvanced Functional Materials
prism.volume31
pubs.funder-project-idDeutsche Forschungsgemeinschaft (408012143)
pubs.funder-project-idDutch Research Council (739.017.005)
rioxxterms.licenseref.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
rioxxterms.versionAO
rioxxterms.versionVoR
rioxxterms.versionofrecord10.1002/adfm.202103778
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
adfm.202103778.pdf
Size:
3.68 MB
Format:
Adobe Portable Document Format
Licence
http://creativecommons.org/licenses/by-nc-nd/4.0/
No Thumbnail Available
Name:
adfm.202103778.xml
Size:
11.78 KB
Format:
Extensible Markup Language
Licence
http://creativecommons.org/licenses/by-nc-nd/4.0/