DNA-colloid systems and micro-rheology
Repository URI
Repository DOI
Type
Change log
Authors
Abstract
We investigate the behaviour of DNA-colloid systems using micro-rheology, with a view to demonstrating the efficacy of passive particle-tracking methodologies and developing entirely new systems. Chapter 1 introduces the fields of DNA coated colloids (DNACCs) and passive micro-rheology, with a particular fo cus on the challenges of creating an equilibrating DNACC system and the practicalities and limitations of passive microrheology in gaining access to valid rheological information. In Chapter 2, we present a newly developed realtime monitoring algorithm for complex moduli in optical tweezer micro-rheology sys,tems. Further to eliminating high frequency artefacts, our method is memory light and computationally efficient. Chapter 3 investigates the dynamics of ADNA coated colloids using Brownian Dynamics simulation and a theoretical model, also applying the algorithm developed in Chapter 2. A two-regime diffusivity is identified, in contrast to previous works, which simply found an increased hydrodynamic size. Chapter 4 looks at tuning the hydrophobicity of silica particles using poly(L)lysinepolyethylene glycol (PLL-PEG). We find an incubation pH dependence on their coverage. From analysing video microscopy trajectories, PLL-PEG coated beads sedimented onto A-DNA brushes are found to be significantly more diffusive. In Chapter 5, we int roduce an entirely new DNACC system, the functionalised fd bacteriophage, where high aspect ratio filamentous virions are coated with short oligonucleotides. Aggregation behaviour is confirmed with Atomic Force Microscopy and Dynamic Light Scattering, and systems where rods can act as a linker between spherical particles are also briefly investigated.
Description
This thesis is not available on this repository until the author agrees to make it public. If you are the author of this thesis and would like to make your work openly available, please contact us: thesis@repository.cam.ac.uk.
Cambridge University Library can make a copy of this work available only for the purposes of private study and non-commercial research. Copies should not be shared or saved in any shared facilities. Copyright over the content of these works is with their authors. Theses from the Library collection are considered unpublished works and according to UK legislation quoting from them is not allowed without permission from their author.
If you can commit to these terms, please complete the request form which you can find through this link: https://imagingservices.lib.cam.ac.uk/
Please note that print copies of theses may be available for consultation in the Cambridge University Library's Manuscript reading room. Admission details are at http://www.lib.cam.ac.uk/collections/departments/manuscripts-university-archives