Aberrant methylation of tRNAs links cellular stress to neuro-developmental disorders.
Published version
Peer-reviewed
Repository URI
Repository DOI
Change log
Authors
Abstract
Mutations in the cytosine-5 RNA methyltransferase NSun2 cause microcephaly and other neurological abnormalities in mice and human. How post-transcriptional methylation contributes to the human disease is currently unknown. By comparing gene expression data with global cytosine-5 RNA methylomes in patient fibroblasts and NSun2-deficient mice, we find that loss of cytosine-5 RNA methylation increases the angiogenin-mediated endonucleolytic cleavage of transfer RNAs (tRNA) leading to an accumulation of 5' tRNA-derived small RNA fragments. Accumulation of 5' tRNA fragments in the absence of NSun2 reduces protein translation rates and activates stress pathways leading to reduced cell size and increased apoptosis of cortical, hippocampal and striatal neurons. Mechanistically, we demonstrate that angiogenin binds with higher affinity to tRNAs lacking site-specific NSun2-mediated methylation and that the presence of 5' tRNA fragments is sufficient and required to trigger cellular stress responses. Furthermore, the enhanced sensitivity of NSun2-deficient brains to oxidative stress can be rescued through inhibition of angiogenin during embryogenesis. In conclusion, failure in NSun2-mediated tRNA methylation contributes to human diseases via stress-induced RNA cleavage.
Description
Keywords
Journal Title
Conference Name
Journal ISSN
1460-2075
Volume Title
Publisher
Publisher DOI
Sponsorship
Cancer Research Uk (None)
Medical Research Council (MR/M01939X/1)
Worldwide Cancer Research (None)
British Skin Foundation (5010)
Cancer Research Uk (None)
European Research Council (310360)
Cancer Research Uk (None)
Cancer Research UK (C14303/A17197)
European Research Council (615584)
Cancer Research UK (15603)