Spatial proteomics identifies a novel CRTC-dependent viral sensing pathway that stimulates production of Interleukin-11
Preprint
Repository URI
Repository DOI
Type
Change log
Authors
Abstract
Appropriate cellular recognition of viruses is essential for the generation of effective innate and adaptive antiviral immunity. Viral sensors and their signalling components thus provide a crucial first line of host defence. Many exhibit subcellular relocalisation upon activation, triggering expression of interferon and antiviral genes. To identify novel signalling factors we analysed protein relocalisation on a global scale during viral infection. CREB Regulated Transcription Coactivators-2 and 3 (CRTC2/3) exhibited early cytoplasmic-to-nuclear translocation upon a diversity of viral stimuli, in diverse cell types. This movement was depended on Mitochondrial Antiviral Signalling Protein (MAVS), cyclo-oxygenase proteins and protein kinase A. We identify a key effect of transcription stimulated by CRTC2/3 translocation as production of the pro-fibrogenic cytokine interleukin-11. This may be important clinically in viral infections associated with fibrosis, including SARS-CoV-2.
Description
Keywords
Is Part Of
Publisher
Publisher DOI
Publisher URL
Rights
Sponsorship
Addenbrooke's Charitable Trust (ACT) (900408)