Mechanistic insight on water dissociation on pristine low-index TiO2 surfaces from machine learning molecular dynamics simulations.
Published version
Peer-reviewed
Repository URI
Repository DOI
Change log
Authors
Abstract
Water adsorption and dissociation processes on pristine low-index TiO2 interfaces are important but poorly understood outside the well-studied anatase (101) and rutile (110). To understand these, we construct three sets of machine learning potentials that are simultaneously applicable to various TiO2 surfaces, based on three density-functional-theory approximations. Here we show the water dissociation free energies on seven pristine TiO2 surfaces, and predict that anatase (100), anatase (110), rutile (001), and rutile (011) favor water dissociation, anatase (101) and rutile (100) have mostly molecular adsorption, while the simulations of rutile (110) sensitively depend on the slab thickness and molecular adsorption is preferred with thick slabs. Moreover, using an automated algorithm, we reveal that these surfaces follow different types of atomistic mechanisms for proton transfer and water dissociation: one-step, two-step, or both. These mechanisms can be rationalized based on the arrangements of water molecules on the different surfaces. Our finding thus demonstrates that the different pristine TiO2 surfaces react with water in distinct ways, and cannot be represented using just the low-energy anatase (101) and rutile (110) surfaces.
Description
Keywords
Journal Title
Conference Name
Journal ISSN
2041-1723