Zero-point energies prevent a trigonal to simple cubic transition in high-pressure sulfur
Published version
Peer-reviewed
Repository URI
Repository DOI
Change log
Authors
Abstract
jats:titleAbstract</jats:title> jats:pRecently published density functional theory results using the PBE functional (Whaley-Baldwin and Needs 2020 jats:italicNew J. Phys.</jats:italic> 22 023020) suggest that elemental sulfur does not adopt the simple-cubic (SC) jats:inline-formula jats:tex-math</jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"> mml:miP</mml:mi> mml:mim</mml:mi> mml:mrow <mml:mover accent="true"> mml:mrow mml:mn3</mml:mn> </mml:mrow> mml:mō</mml:mo> </mml:mover> </mml:mrow> mml:mim</mml:mi> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="estabd487ieqn1.gif" xlink:type="simple" /> </jats:inline-formula> phase at high pressures, in disagreement with previous works (Rudin and Liu 1999 jats:italicPhys. Rev. Lett.</jats:italic> jats:bold83</jats:bold> 3049--52; Gavryushkin jats:italicet al</jats:italic> 2017 jats:italicPhys. Status Solidi</jats:italic> B jats:bold254</jats:bold> 1600857). We carry out an extensive set of calculations using a variety of different exchange–correlation functionals (both local and non-local), and show that even though under LDA and PW91 a high-pressure SC phase does indeed become favourable at the static lattice level, when zero-point energies (ZPEs) are included, the transition to the SC phase is suppressed in every case, owing to the larger ZPE of the SC phase; thus confirming the transition sequence as jats:inline-formula jats:tex-math</jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"> mml:miR</mml:mi> mml:mrow <mml:mover accent="true"> mml:mrow mml:mn3</mml:mn> </mml:mrow> mml:mō</mml:mo> </mml:mover> </mml:mrow> mml:mim</mml:mi> mml:mo→</mml:mo> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="estabd487ieqn2.gif" xlink:type="simple" /> </jats:inline-formula> BCC, with no intervening SC phase. We reproduce these findings with pseudopotentials that explicitly include core electronic states, and show that even at these high pressures, only the jats:italicn</jats:italic> = 3 valence shell contributes to bonding in sulfur. We then compare our findings against the all-electron code jats:monospaceELK</jats:monospace>, which is in excellent agreement with our pseudopotential results, and examine the roles of the exchange and correlation contributions to the total energy. We further calculate anharmonic vibrational corrections to the ZPEs of the two phases, and find that such corrections are several orders of magnitude smaller than the ZPEs and are thus negligible. The effect of finite temperatures is also considered, and we show that the jats:inline-formula jats:tex-math</jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"> mml:miP</mml:mi> mml:mim</mml:mi> mml:mrow <mml:mover accent="true"> mml:mrow mml:mn3</mml:mn> </mml:mrow> mml:mō</mml:mo> </mml:mover> </mml:mrow> mml:mim</mml:mi> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="estabd487ieqn3.gif" xlink:type="simple" /> </jats:inline-formula> phase becomes even more unfavourable with an increase in temperature. Finally, the experimental consequences of our results on the equation of state of sulfur and its superconducting critical temperature are explicitly calculated.</jats:p>
Description
Funder: Engineering and Physical Sciences Research Council; doi: https://doi.org/10.13039/501100000266
Keywords
Journal Title
Conference Name
Journal ISSN
2516-1075