Relationship between chemical shift value and accessible surface area for all amino acid atoms.

Change log
Vranken, Wim F 
Rieping, Wolfgang 

BACKGROUND: Chemical shifts obtained from NMR experiments are an important tool in determining secondary, even tertiary, protein structure. The main repository for chemical shift data is the BioMagResBank, which provides NMR-STAR files with this type of information. However, it is not trivial to link this information to available coordinate data from the PDB for non-backbone atoms due to atom and chain naming differences, as well as sequence numbering changes. RESULTS: We here describe the analysis of a consistent set of chemical shift and coordinate data, in which we focus on the relationship between the per-atom solvent accessible surface area (ASA) in the reported coordinates and their reported chemical shift value. The data is available online on CONCLUSION: Atoms with zero per-atom ASA have a significantly larger chemical shift dispersion and often have a different chemical shift distribution compared to those that are solvent accessible. With higher per-atom ASA, the chemical shift values also tend towards random coil values. The per-atom ASA, although not the determinant of the chemical shift, thus provides a way to directly correlate chemical shift information to the atomic coordinates.


RIGHTS : This article is licensed under the BioMed Central licence at which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.

Amino Acids, Databases, Protein, Nuclear Magnetic Resonance, Biomolecular, Protein Structure, Secondary, Proteins, Surface Properties
Journal Title
BMC Struct Biol
Conference Name
Journal ISSN
Volume Title
Springer Science and Business Media LLC