Parametric instability in a free-evolving warped protoplanetary disc
Accepted version
Repository URI
Repository DOI
Change log
Authors
Abstract
Warped accretion discs of low viscosity are prone to hydrodynamic instability due to parametric resonance of inertial waves as confirmed by local simulations. Global simulations of warped discs, using either smoothed particle hydrodynamics (SPH) or grid-based codes, are ubiquitous but no such instability has been seen. Here we utilize a hybrid Godunov-type Lagrangian method to study parametric instability in global simulations of warped Keplerian discs at unprecedentedly high resolution (up to 120 million particles). In the global simulations, the propagation of the warp is well described by the linear bending-wave equations before the instability sets in. The ensuing turbulence, captured for the first time in a global simulation, damps relative orbital inclinations and leads to a decrease in the angular momentum deficit. As a result, the warp undergoes significant damping within one bending-wave crossing time. Observed protoplanetary disc warps are likely maintained by companions or aftermath of disc breaking.
Description
Keywords
Journal Title
Conference Name
Journal ISSN
1365-2966
Volume Title
Publisher
Publisher DOI
Rights
Sponsorship
Science and Technology Facilities Council (ST/P000673/1)