Design Techniques for High-Performance SAR A/D Converters

Change log

The design of electronics needs to account for the non-ideal characteristics of the device technologies used to realize practical circuits. This is particularly important in mixed analog-digital design since the best device technologies are very different for digital compared to analog circuits. One solution for this problem is to use a calibration correction approach to remove the errors introduced by devices, but this adds complexity and power dissipation, as well as reducing operation speed, and so must be optimised. This thesis addresses such an approach to improve the performance of certain types of analog-to-digital converter (ADC) used in advanced telecommunications, where speed, accuracy and power dissipation currently limit applications. The thesis specifically focuses on the design of compensation circuits for use in successive approximation register (SAR) ADCs. ADCs are crucial building blocks in communication systems, in general, and for mobile networks, in particular. The recently launched fifth generation of mobile networks (5G) has required new ADC circuit techniques to meet the higher speed and lower power dissipation requirements for 5G technology. The SAR has become one of the most favoured architectures for designing high-performance ADCs, but the successive nature of the circuit operation makes it difficult to reach ∼GS/s sampling rates at reasonable power consumption. Here, two calibration techniques for high-performance SAR ADCs are presented. The first uses an on-chip stochastic-based mismatch calibration technique that is able to accurately compute and compensate for the mismatch of a capacitive DAC in a SAR ADC. The stochastic nature of the proposed calibration method enables determination of the mismatch of the CAPDAC with a resolution much better than that of the DAC. This allows the unit capacitor to scale down to as low as 280aF for a 9-bit DAC. Since the CAP-DAC causes a large part of the overall dynamic power consumption and directly determines both the sizes of the driving and sampling switches and the size of the input capacitive load of the ADC and the kT/C noise power, a small CAP-DAC helps the power efficiency. To validate the proposed calibration idea, a 10-bit asynchronous SAR ADC was fabricated in 28-nm CMOS. Measurement results show that the proposed stochastic calibration improves the ADC’s SFDR and SNDR by 14.9 dB, 11.5 dB, respectively. After calibration, the fabricated SAR ADC achieves an ENOB of 9.14 bit at a sampling rate of 85 MS/s, resulting in a Walden FoM of 10.9 fJ/c-s. The second calibration technique is a timing-skew calibration for a time-interleaved (TI) SAR ADC that calibrates/computes the inter-channel timing and offset mismatch simultaneously. Simulation results show the effectiveness of this calibration method. When used together, the proposed mismatch calibration technique and the timing-skew calibration technique enables a TI SAR ADC to be designed that can achieve a sampling rate of ∼GS/s with 10-bit resolution and a power consumption as low as ∼10mW; specifications that satisfy the requirements of 5G technology.

David, Hasko
Analog-to-Digital Converter, Successive Approximation Converter, Calibration, Time-Interleaved Converter
Doctor of Philosophy (PhD)
Awarding Institution
University of Cambridge