Time and Frequency Localized Pulse Shape for Resolution Enhancement in STFT-BOTDR
Repository URI
Repository DOI
Change log
Authors
Abstract
jats:pShort-Time Fourier Transform-Brillouin Optical Time-Domain Reflectometry (STFT-BOTDR) implements STFT over the full frequency spectrum to measure the distributed temperature and strain along the optic fiber, providing new research advances in dynamic distributed sensing. The spatial and frequency resolution of the dynamic sensing are limited by the Signal to Noise Ratio (SNR) and the Time-Frequency (jats:italicT-F</jats:italic>) localization of the input pulse shape.jats:italicT-F</jats:italic>localization is fundamentally important for the communication system, which suppresses interchannel interference (ICI) and intersymbol interference (ISI) to improve the transmission quality in multicarrier modulation (MCM). This paper demonstrates that thejats:italicT-F</jats:italic>localized input pulse shape can enhance the SNR and the spatial and frequency resolution in STFT-BOTDR. Simulation and experiments ofjats:italicT-F</jats:italic>localized different pulses shapes are conducted to compare the limitation of the system resolution. The result indicates that rectangular pulse should be selected to optimize the spatial resolution and Lorentzian pulse could be chosen to optimize the frequency resolution, while Gaussian shape pulse can be used in general applications for its balanced performance in both spatial and frequency resolution. Meanwhile,jats:italicT-F</jats:italic>localization is proved to be useful in the pulse shape selection for system resolution optimization.</jats:p>
Description
Keywords
Journal Title
Conference Name
Journal ISSN
1687-7268
Volume Title
Publisher
Publisher DOI
Rights
Sponsorship
Engineering and Physical Sciences Research Council (EP/K000314/1)
Engineering and Physical Sciences Research Council (EP/L010917/1)