Repository logo

Transferable Machine Learning Interatomic Potential for Bond Dissociation Energy Prediction of Drug-like Molecules.

Published version

Repository DOI

Change log


We present a transferable MACE interatomic potential that is applicable to open- and closed-shell drug-like molecules containing hydrogen, carbon, and oxygen atoms. Including an accurate description of radical species extends the scope of possible applications to bond dissociation energy (BDE) prediction, for example, in the context of cytochrome P450 (CYP) metabolism. The transferability of the MACE potential was validated on the COMP6 data set, containing only closed-shell molecules, where it reaches better accuracy than the readily available general ANI-2x potential. MACE achieves similar accuracy on two CYP metabolism-specific data sets, which include open- and closed-shell structures. This model enables us to calculate the aliphatic C-H BDE, which allows us to compare reaction energies of hydrogen abstraction, which is the rate-limiting step of the aliphatic hydroxylation reaction catalyzed by CYPs. On the "CYP 3A4" data set, MACE achieves a BDE RMSE of 1.37 kcal/mol and better prediction of BDE ranks than alternatives: the semiempirical AM1 and GFN2-xTB methods and the ALFABET model that directly predicts bond dissociation enthalpies. Finally, we highlight the smoothness of the MACE potential over paths of sp3C-H bond elongation and show that a minimal extension is enough for the MACE model to start finding reasonable minimum energy paths of methoxy radical-mediated hydrogen abstraction. Altogether, this work lays the ground for further extensions of scope in terms of chemical elements, (CYP-mediated) reaction classes and modeling the full reaction paths, not only BDEs.


Publication status: Published


3404 Medicinal and Biomolecular Chemistry, 34 Chemical Sciences, 3406 Physical Chemistry, 7 Affordable and Clean Energy

Journal Title

J Chem Theory Comput

Conference Name

Journal ISSN


Volume Title



American Chemical Society (ACS)
Engineering and Physical Sciences Research Council (2276986)
Engineering and Physical Sciences Research Council (EP/P022596/1)
Engineering and Physical Sciences Research Council (EP/X035891/1)
EPSRC (EP/T022159/1)
EPSRC (EP/X034712/1)
Engineering and Physical Sciences Research Council (EP/S024220/1)