Repository logo
 

Varifocal Question Generation for Fact-checking

Published version
Peer-reviewed

Type

Conference Object

Change log

Authors

Ousidhoum, N 
Yuan, Z 

Abstract

Fact-checking requires retrieving evidence related to a claim under investigation. The task can be formulated as question generation based on a claim, followed by question answering. However, recent question generation approaches assume that the answer is known and typically contained in a passage given as input, whereas such passages are what is being sought when verifying a claim. In this paper, we present Varifocal, a method that generates questions based on different focal points within a given claim, i.e. different spans of the claim and its metadata, such as its source and date. Our method outperforms previous work on a fact-checking question generation dataset on a wide range of automatic evaluation metrics. These results are corroborated by our manual evaluation, which indicates that our method generates more relevant and informative questions. We further demonstrate the potential of focal points in generating sets of clarification questions for product descriptions.

Description

Keywords

Journal Title

Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, EMNLP 2022

Conference Name

Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Journal ISSN

Volume Title

Publisher

Association for Computational Linguistics