Repository logo

SC3: consensus clustering of single-cell RNA-seq data

Accepted version

Thumbnail Image



Change log


Kiselev, VY 
Kirschner, K 
Schaub, MT 
Andrews, T 
Yiu, A 


Single-cell RNA-seq enables the quantitative characterization of cell types based on global transcriptome profiles. We present single-cell consensus clustering (SC3), a user-friendly tool for unsupervised clustering, which achieves high accuracy and robustness by combining multiple clustering solutions through a consensus approach ( We demonstrate that SC3 is capable of identifying subclones from the transcriptomes of neoplastic cells collected from patients.



gene expression, machine learning, RNA sequencing, software

Journal Title

Nature Methods

Conference Name

Journal ISSN


Volume Title



Nature Publishing Group
Medical Research Council (MC_PC_12009)
Wellcome Trust (104710/Z/14/Z)
Leukaemia & Lymphoma Research (13003)
Blood Cancer UK (07037)
V.Y.K., T.A., A.Y. and M.H. are supported by Wellcome Trust Grants. K.N.N. is supported by the Wellcome Trust Strategic Award 'Single cell genomics of mouse gastrulation'. M.T.S. acknowledges support from FRS-FNRS; the Belgian Network DYSCO (Dynamical Systems, Control and Optimisation), funded by the Interuniversity Attraction Poles Programme initiated by the Belgian State Science Policy Office; and the ARC (Action de Recherche Concerte) on Mining and Optimization of Big Data Models, funded by the Wallonia-Brussels Federation. M.B. acknowledges support from EPSRC (grant EP/N014529/1). T.C. was funded through a core funded fellowship by the Sanger Institute and a Chancellor′s fellowship from the University of Edinburgh. K.K. and A.R.G. are supported by Bloodwise (grant ref. 13003), the Wellcome Trust (grant ref. 104710/Z/14/Z), the Medical Research Council, the Kay Kendall Leukaemia Fund, the Cambridge NIHR Biomedical Research Center, the Cambridge Experimental Cancer Medicine Centre, the Leukemia and Lymphoma Society of America (grant ref. 07037) and a core support grant from the Wellcome Trust and MRC to the Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute. W.R. was supported by BBSRC (grant ref. BB/K010867/1), the Wellcome Trust (grant ref. 095645/Z/11/Z), EU BLUEPRINT and EpiGeneSys.
Is derived from: