HyDRo: Atmospheric retrieval of rocky exoplanets in thermal emission

Change log
Piette, AAA 
Madhusudhan, N 
Mandell, AM 

Emission spectroscopy is a promising technique to observe atmospheres of rocky exoplanets, probing both their chemistry and thermal profiles. We present HyDRo, an atmospheric retrieval framework for thermal emission spectra of rocky exoplanets. HyDRo does not make prior assumptions about the background atmospheric composition, and can therefore be used to interpret spectra of secondary atmospheres with unknown compositions. We use HyDRo to assess the chemical constraints which can be placed on rocky exoplanet atmospheres using JWST. Firstly, we identify the best currently-known rocky exoplanet candidates for spectroscopic observations in thermal emission with JWST, finding >30 known rocky exoplanets whose thermal emission will be detectable by JWST/MIRI in fewer than 10 eclipses at R~10. We then consider the observations required to characterise the atmospheres of three promising rocky exoplanets across the ~400-800 K equilibrium temperature range: Trappist-1 b, GJ 1132 b, and LHS 3844 b. Considering a range of CO_2- to H_2O-rich atmospheric compositions, we find that as few as 8 eclipses of LHS 3844 b or GJ 1132 b with MIRI will be able to place important constraints on the chemical compositions of their atmospheres. This includes confident detections of CO_2 and H_2O in the case of a cloud-free CO_2-rich composition, besides ruling out a bare rock scenario. Similarly, 30 eclipses of Trappist-1 b with MIRI/LRS can allow detections of a cloud-free CO_2-rich or CO_2-H_2O atmosphere. HyDRo will allow important atmospheric constraints for rocky exoplanets using JWST observations, providing clues about their geochemical environments.

planets and satellites: atmospheres, planets and satellites: composition, infrared: planetary systems
Journal Title
Monthly Notices of the Royal Astronomical Society
Conference Name
Journal ISSN
Volume Title
Oxford University Press (OUP)
Publisher's own licence