Tree Species Classification in a Complex Brazilian Tropical Forest Using Hyperspectral and LiDAR Data

Published version

Published version
Repository DOI

Change log

jats:pThis study experiments with different combinations of UAV hyperspectral data and LiDAR metrics for classifying eight tree species found in a Brazilian Atlantic Forest remnant, the most degraded Brazilian biome with high fragmentation but with huge structural complexity. The selection of the species was done based on the number of tree samples, which exist in the plot data and in the fact the UAV imagery does not acquire information below the forest canopy. Due to the complexity of the forest, only species that exist in the upper canopy of the remnant were included in the classification. A combination of hyperspectral UAV images and LiDAR point clouds were in the experiment. The hyperspectral images were photogrammetric and radiometric processed to obtain orthomosaics with reflectance factor values. Raw spectra were extracted from the trees, and vegetation indices (VIs) were calculated. Regarding the LiDAR data, both the point cloud—referred to as Peak Returns (PR)—and the full-waveform (FWF) LiDAR were included in this study. The point clouds were processed to normalize the intensities and heights, and different metrics for each data type (PR and FWF) were extracted. Segmentation was preformed semi-automatically using the superpixel algorithm, followed with manual correction to ensure precise tree crown delineation before tree species classification. Thirteen different classification scenarios were tested. The scenarios included spectral features and LiDAR metrics either combined or not. The best result was obtained with all features transformed with principal component analysis with an accuracy of 76%, which did not differ significantly from the scenarios using the raw spectra or VIs with PR or FWF LiDAR metrics. The combination of spectral data with geometric information from LiDAR improved the classification of tree species in a complex tropical forest, and these results can serve to inform management and conservation practices of these forest remnants.</jats:p>


Peer reviewed: True

Brazilian Atlantic Forest, tree species mapping, LiDAR, hyperspectral imaging, superpixel segmentation
Journal Title
Conference Name
Journal ISSN
Volume Title
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior–Brazil (CAPES)–Finance Code 001 (88882.433953/2019-01)
Programa Institucional de Internacionalização (CAPES/PrInt) (88881.310314/2018-01)
Conselho Nacional de Desenvolvimento Científico e Tecnológico–Brazil (CNPq) (404379/2016-8, 303670/2018-5)
Brazilian–Finnish joint project (2013/50426-4)
Academy of Finland (273806)