Repository logo
 

Machine learning for gap-filling in greenhouse gas emissions databases

Accepted version
Peer-reviewed

Type

Article

Change log

Authors

Abstract

Greenhouse Gas (GHG) emissions datasets are often incomplete due to inconsistent reporting and poor transparency. Filling the gaps in these datasets allows for more accurate targeting of strategies aiming to accelerate the reduction of GHG emissions. This study evaluates the potential of machine learning methods to automate the completion of GHG datasets. We use 3 datasets of increasing complexity with 18 different gap-filling methods and provide a guide to which methods are useful in which circumstances. If few dataset features are available, or the gap consists only of a missing time step in a record, then simple interpolation is often the most accurate method and complex models should be avoided. However, if more features are available and the gap involves non-reporting emitters, then machine learning methods can be more accurate than simple extrapolation. Furthermore, the secondary output of feature importance from complex models allows for data collection prioritisation to accelerate the improvement of datasets. Graph based methods are particularly scalable due to the ease of updating predictions given new data and incorporating multimodal data sources. This study can serve as a guide to the community upon which to base ever more integrated frameworks for automated detailed GHG emissions estimations, and implementation guidance is available at https://hackmd.io/@luke-scot/ML-for-GHG-database-completion and https://doi.org/10.5281/zenodo.10463104.

Description

Keywords

46 Information and Computing Sciences, 33 Built Environment and Design, 4611 Machine Learning, Networking and Information Technology R&D (NITRD), Machine Learning and Artificial Intelligence, 1.4 Methodologies and measurements, Generic health relevance, 13 Climate Action

Journal Title

Journal of Industrial Ecology

Conference Name

Journal ISSN

1088-1980
1530-9290

Volume Title

Publisher

Wiley
Sponsorship
EPSRC (2413365)
Relationships
Is previous version of: