Repository logo
 

Diffusion tensor imaging profiles reveal specific neural tract distortion in normal pressure hydrocephalus

Published version
Peer-reviewed

Type

Article

Change log

Authors

Keong, NC 
Pena, A 
Price, SJ 
Czosnyka, Z 

Abstract

BACKGROUND: The pathogenesis of normal pressure hydrocephalus (NPH) remains unclear which limits both early diagnosis and prognostication. The responsiveness to intervention of differing, complex and concurrent injury patterns on imaging have not been well-characterized. We used diffusion tensor imaging (DTI) to explore the topography and reversibility of white matter injury in NPH pre- and early after shunting. METHODS: Twenty-five participants (sixteen NPH patients and nine healthy controls) underwent DTI, pre-operatively and at two weeks post-intervention in patients. We interrogated 40 datasets to generate a full panel of DTI measures and corroborated findings with plots of isotropy (p) vs. anisotropy (q). RESULTS: Concurrent examination of DTI measures revealed distinct profiles for NPH patients vs. controls. PQ plots demonstrated that patterns of injury occupied discrete white matter districts. DTI profiles for different white matter tracts showed changes consistent with i) predominant transependymal diffusion with stretch/ compression, ii) oedema with or without stretch/ compression and iii) predominant stretch/ compression. Findings were specific to individual tracts and dependent upon their proximity to the ventricles. At two weeks post-intervention, there was a 6·7% drop in axial diffusivity (p = 0·022) in the posterior limb of the internal capsule, compatible with improvement in stretch/ compression, that preceded any discernible changes in clinical outcome. On PQ plots, the trajectories of the posterior limb of the internal capsule and inferior longitudinal fasciculus suggested attempted 'round trips'. i.e. return to normality. CONCLUSION: DTI profiling with p:q correlation may offer a non-invasive biomarker of the characteristics of potentially reversible white matter injury.

Description

Keywords

Aged, Aged, 80 and over, Case-Control Studies, Diffusion Tensor Imaging, Female, Humans, Hydrocephalus, Normal Pressure, Image Processing, Computer-Assisted, Male, Middle Aged, Neural Pathways, Neuropsychological Tests, White Matter

Journal Title

PLoS ONE

Conference Name

Journal ISSN

1932-6203
1932-6203

Volume Title

12

Publisher

Public Library of Science (PLoS)
Sponsorship
Medical Research Council (G0001237)
Medical Research Council (G0600986)
Medical Research Council (G1000183)
Medical Research Council (G0600986/1)
Nicole C Keong was supported by a Joint Royal College of Surgeons of England and Dunhill Medical Trust Fellowship and a Tunku Abdul Rahman Centenary Grant and other from National Medical Research Council Transition Award Grant, Singapore (supporting ongoing work). A Medical Research Council Programme Grant [Wolfson Brain Imaging Centre Cooperative] supported the study imaging work. Marek Czosnyka was supported by grants from Johnson and Johnson – Codman, Integra, Sophysa and Aesculap. Zofia Czosnyka was supported by grants from Johnson and Johnson – Codman, Integra, Sophysa and Aesculap. Elise DeVito was funded by the Pinsent-Darwin Studentship in Mental Pathology. Charlotte Housden took up employment with Cambridge Cognition Ltd following her PhD. Barbara J Sahakian was supported by a Medical Research Council Grant and reports personal fees from Cambridge Cognition, Lundbeck, Servier, grants from Janssen/J&J, other from Otsuka and personal fees from Peak (Brainbow). JDP was supported by an NIHR Senior Investigator Award, a Medical Research Council Programme grant and an NIHR Cambridge Biomedical Research Centre grant [brain injury theme] and also wishes to declare the following - Past advisor to Codman and Medtronic international advisory board, Director (unpaid) of Medicam, Scientific Collaboration with GSK (unpaid), Trustee of Brain Research Trust, Patron of Headway Cambridgeshire, Honorary Director of National Institute for Health Research Brain Injury Healthcare Technology Cooperative.