Repository logo
 

Biochemical sensing using Siloxane polymer waveguides

cam.restrictionthesis_access_open
cam.supervisorPenty, Richard
cam.thesis.fundingtrue
dc.contributor.authorRacz, Gergely Zsigmond
dc.date.accessioned2018-11-09T15:39:58Z
dc.date.available2018-11-09T15:39:58Z
dc.date.issued2019-01-26
dc.date.submitted2018-05-25
dc.date.updated2018-11-09T09:56:44Z
dc.description.abstractThe objective of this work presented here is to extend the capabilities of siloxane waveguide technology in the field of biochemical sensing. Recent advances in the integration of polymeric optical waveguides with electronics onto standard printed circuit boards (PCBs) allow the formation of cost-effective lab-on-achip modules suitable for mass production. This technology has been primarily designed for on-board data communication. The focus of this research is to investigate the possibility of realising a Siloxane polymer based lab-on-chip sensor. Different siloxane-polymer-based optical waveguide sensor structures have been designed and analysed from the aspect of biochemical sensing. An evanescent-wave absorption sensor based on mode-selective asymmetric waveguide junctions is proposed for the first time. The device mitigates the common optical effect of spurious response in absorption sensors due to the analyte transport fluid. Head injury is the leading cause of death in the population of people under 40 years. Currently, 3 out of 5 deaths in emergency rooms are due to severe brain injuries in the developed world. Researchers at the Neurosciences Critical Care Unit (NCCU) at Addenbrooke’s Hospital have managed to correlate biochemical changes with the severeness of the injury and the likelihood of patient recovery. Considerable progress has been made to develop a lab-on-chip sensor capable of continuously monitoring glucose, lactate and pyruvate concentrations in the brain fluid, hence the contribution to the current trend in the advancement of portable lab-on-chip technologies for the deployment of point-of-care diagnostic tools. A novel recognition layer has been developed based on porphyrin in combination with glucose, lactate and pyruvate oxidase for measuring all the analytes, enabling fast and reversible chemical reactions to be monitored by optical interrogation. The operational wavelength of the developed recognition layer is 425 nm, which required the formation of polymer features that were beyond the fabrication capabilities at the time. Through considerable process development and the adoption of nanoimprinting lithography, siloxane polymer based optical waveguides were fabricated allowing the realisation of highly sensitive optical sensors. Based on the results that are presented here, it can be concluded the functionalization of siloxane polymer waveguide have a potential for realising biochemical sensors in the future. The new fabrication technique will allow the formation of more robust and complex lab-on-chip sensors based on this material.
dc.description.sponsorshipESPRC
dc.identifier.doi10.17863/CAM.32261
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/284891
dc.language.isoen
dc.publisher.collegeSidney Sussex
dc.publisher.departmentEngineering
dc.publisher.institutionUniversity of Cambridge
dc.rightsAll rights reserved
dc.rightsAll Rights Reserveden
dc.rights.urihttps://www.rioxx.net/licenses/all-rights-reserved/en
dc.subjectoptical waveguide
dc.subjectoptical sensing
dc.subjectpolymer integrated optics
dc.subjectporphyrin
dc.subjecttraumatic brain injury
dc.subjectlab-on-chip
dc.titleBiochemical sensing using Siloxane polymer waveguides
dc.typeThesis
dc.type.qualificationlevelDoctoral
dc.type.qualificationnameDoctor of Philosophy (PhD)
dc.type.qualificationtitlePhD in Photonic System Development

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ThesisSubmitted2018 (2).pdf
Size:
6.36 MB
Format:
Adobe Portable Document Format
Description:
Thesis
Licence
https://www.rioxx.net/licenses/all-rights-reserved/
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.8 KB
Format:
Item-specific license agreed upon to submission