Repository logo
 

Malonate given at reperfusion prevents post-myocardial infarction heart failure by decreasing ischemia/reperfusion injury.

Accepted version
Peer-reviewed

Repository DOI


Type

Article

Change log

Authors

Abe, Jiro 
Vujic, Ana 
Prag, Hiran A 
Murphy, Michael P 

Abstract

The mitochondrial metabolite succinate is a key driver of ischemia/reperfusion injury (IRI). Targeting succinate metabolism by inhibiting succinate dehydrogenase (SDH) upon reperfusion using malonate is an effective therapeutic strategy to achieve cardioprotection in the short term (< 24 h reperfusion) in mouse and pig in vivo myocardial infarction (MI) models. We aimed to assess whether inhibiting IRI with malonate given upon reperfusion could prevent post-MI heart failure (HF) assessed after 28 days. Male C57BL/6 J mice were subjected to 30 min left anterior coronary artery (LAD) occlusion, before reperfusion for 28 days. Malonate or without-malonate control was infused as a single dose upon reperfusion. Cardiac function was assessed by echocardiography and fibrosis by Masson's trichrome staining. Reperfusion without malonate significantly reduced ejection fraction (~ 47%), fractional shortening (~ 23%) and elevated collagen deposition 28 days post-MI. Malonate, administered as a single infusion (16 mg/kg/min for 10 min) upon reperfusion, gave a significant cardioprotective effect, with ejection fraction (~ 60%) and fractional shortening (~ 30%) preserved and less collagen deposition. Using an acidified malonate formulation, to enhance its uptake into cardiomyocytes via the monocarboxylate transporter 1, both 1.6 and 16 mg/kg/min 10 min infusion led to robust long-term cardioprotection with preserved ejection fraction (> 60%) and fractional shortening (~ 30%), as well as significantly less collagen deposition than control hearts. Malonate administration upon reperfusion prevents post-MI HF. Acidification of malonate enables lower doses of malonate to also achieve long-term cardioprotection post-MI. Therefore, the administration of acidified malonate upon reperfusion is a promising therapeutic strategy to prevent IRI and post-MI HF.

Description

Keywords

Heart failure with reduced ejection fraction, Ischemia/reperfusion injury, Malonate, Mitochondria, Reactive oxygen species, Succinate

Journal Title

Basic Res Cardiol

Conference Name

Journal ISSN

0300-8428
1435-1803

Volume Title

Publisher

Springer Science and Business Media LLC
Sponsorship
British Heart Foundation (PG/20/10025)
Medical Research Council (MC_UU_00015/3)
Wellcome Trust (220257/Z/20/Z)