Repository logo

Spiral density waves and vertical circulation in protoplanetary discs

Published version

Change log


Latter, HN 
Riols, Antoine 


Spiral density waves dominate several facets of accretion disc dynamics – planet-disc interactions and gravitational instability (GI) most prominently. Though they have been examined thoroughly in two-dimensional simulations, their vertical structures in the non-linear regime are somewhat unexplored. This neglect is unwarranted given that any strong vertical motions associated with these waves could profoundly impact dust dynamics, dust sedimentation, planet formation, and the emissivity of the disc surface. In this paper, we combine linear calculations and shearing box simulations in order to investigate the vertical structure of spiral waves for various polytropic stratifications and wave amplitudes. For sub-adiabatic profiles, we find that spiral waves develop a pair of counter-rotating poloidal rolls. Particularly strong in the non-linear regime, these vortical structures issue from the baroclinicity supported by the background vertical entropy gradient. They are also intimately connected to the disc's g modes which appear to interact non-linearly with the density waves. Furthermore, we demonstrate that the poloidal rolls are ubiquitous in gravitoturbulence, emerging in the vicinity of GI spiral wakes, and potentially transporting grains off the disc mid-plane. Other than hindering sedimentation and planet formation, this phenomena may bear on observations of the disc's scattered infrared luminosity. The vortical features could also impact on the turbulent dynamo operating in young protoplanetary discs subject to GI, or possibly even galactic discs.



accretion, accretion discs, turbulence, waves, protoplanetary discs

Journal Title

Monthly Notices of the Royal Astronomical Society

Conference Name

Journal ISSN


Volume Title



Oxford University Press
Science and Technology Facilities Council (ST/P000673/1)
Science and Technology Facilities Council (ST/L000636/1)