Normal-shock/boundary-layer interactions in transonic intakes at high incidence
Accepted version
Peer-reviewed
Repository URI
Repository DOI
Change log
Authors
Abstract
During high-incidence manoeuvres, shock-wave boundary layer interactions can develop over transonic inlet lower lips, significantly impacting aerodynamic performance. Here, a novel experimental rig is used to investigate the nature and severity of these interactions for a typical high incidence scenario. Furthermore, we explore the sensitivity to changes in angle of incidence and mass flow rate, as potentially experienced across off-design operations.
The reference flow-field, informed by typical climb conditions, is defined by an incidence of 23° and a free stream Mach number M=0.435. The lower lip flow is characterised by a rapid acceleration around the leading-edge and a M=1.4 shock ahead of the intake diffuser. Overall, this flow-field is found to be relatively benign, with minimal shock-induced separation. Downstream of the interaction, the boundary layer recovers a healthy profile ahead of the nominal fan location. Increasing incidence by 2°, the separation becomes noticeably larger and unsteadiness develops. Detrimental effects are exacerbated at an even higher incidence of 26°. Increasing the mass flow rate over the lip by up to 15% of the initial value has minor effects on performance and is not found to inhibit the boundary layer profile recovery.
Description
Keywords
Journal Title
Conference Name
Journal ISSN
1533-385X